|
Tarifeño-Saldivia, A., Calvino, F., De Blas, A., Brusasco, B., Casanovas-Hoste, A., Cives, A. M., et al. (2024). Ambient dosimetry in pulsed neutron fields with LINrem detectors. Radiat. Phys. Chem., 224, 112101–7pp.
Abstract: The status of the LINrem project is presented, focusing on the development of innovative neutron dosimeters with enhanced energy sensitivity, time resolution, and portability. Designed to meet the technical demands of radiation protection in modern particle and nuclear facilities, these dosimeters are discussed in detail. Results from experimental campaigns showcasing their efficacy in pulsed fields generated by fusion plasmas and high-intensity pulsed lasers are presented. Additionally, prospects and future plans for the LINrem project are outlined.
|
|
|
Romero-Barrientos, J., Marquez Damian, J. I., Molina, F., Zambra, M., Aguilera, P., Lopez-Usquiano, F., et al. (2022). Calculation of kinetic parameters beta eff and L with modified open source Monte Carlo code OpenMC(TD). Nucl. Eng. Technol., 54(3), 811–816.
Abstract: This work presents the methodology used to expand the capabilities of the Monte Carlo code OpenMC for the calculation of reactor kinetic parameters: effective delayed neutron fraction beff and neutron generation time L. The modified code, OpenMC(Time-Dependent) or OpenMC(TD), was then used to calculate the effective delayed neutron fraction by using the prompt method, while the neutron generation time was estimated using the pulsed method, fitting L to the decay of the neutron population. OpenMC(TD) is intended to serve as an alternative for the estimation of kinetic parameters when licensed codes are not available. The results obtained are compared to experimental data and MCNP calculated values for 18 benchmark configurations.
|
|
|
Fujita, H. et al, Algora, A., Estevez-Aguado, E., Molina, F., & Rubio, B. (2019). Experimental study of Gamow-Teller transitions via the high-energy-resolution O-18(He-3, t)F-18 reaction: Identification of the low-energy “super” -Gamow-Teller state. Phys. Rev. C, 100(3), 034618–13pp.
Abstract: Using the high-resolution O-18(He-3, t)F-18 reaction at 0 degrees and at 140 MeV/nucleon, Gamow-Teller (GT) transitions were studied. A high energy resolution of 31 keV was achieved by applying dispersion matching techniques. The main part of the observed GT transition strength is concentrated in the transition to the F-18 ground state (g.s.). The absolute values of the reduced GT transition strengths, B(GT), were derived up to E-x = 12 MeV assuming proportionality between the B(GT) values and the reaction cross sections at 0 degrees. The B(GT) value obtained from the beta decay of F-18 (g.s.) -> O-18 (g.s.) was used to determine the proportionality constant. A total B(GT) of 4.06(5) was found and 76(1)% of the strength is concentrated to the ground state of F-18. The obtained B(GT) values were compared with those from the O-18(p, n) F-18 reaction and the mirror symmetric beta(+) decay of Ne-18 -> F-18. The candidates for 1(+) states with isospin T = 1 were identified by comparison with the O-18(p, p') data. The results of shell-model and quasiparticle-random-phase approximation calculations suggest constructive contributions of various configurations to the F-18 ground state, suggesting that this state is the low-energy super GT state.
|
|
|
Kucuk, L. et al, Orrigo, S. E. A., Montaner-Piza, A., Rubio, B., Gelletly, W., Algora, A., et al. (2017). Half-life determination of T-z =-1 and T-z =-1/2 proton-rich nuclei and the beta decay of Zn-58. Eur. Phys. J. A, 53(6), 134–10pp.
Abstract: We have measured the beta-decay half-lives of 16 neutron-deficient nuclei with T-z = -1/2 and -1, ranging from chromium to germanium. They were produced in an experiment carried out at GANIL and optimized for the production of Zn-58, for which in addition we present the decay scheme and absolute Fermi and Gamow-Teller transition strengths. Since all of these nuclei lie on the rp-process pathway, the T-1/2 values are important ingredients for the rp-process reaction flow calculations and for models of X-ray bursters.
|
|
|
Molina, F., Aguilera, P., Romero-Barrientos, J., Arellano, H. F., Agramunt, J., Medel, J., et al. (2017). Energy distribution of the neutron flux measurements at the Chilean Reactor RECH-1 using multi-foil neutron activation and the Expectation Maximization unfolding algorithm. Appl. Radiat. Isot., 129, 28–34.
Abstract: We present a methodology to obtain the energy distribution of the neutron flux of an experimental nuclear reactor, using multi-foil activation measurements and the Expectation Maximization unfolding algorithm, which is presented as an alternative to well known unfolding methods such as GRAVEL. Self-shielding flux corrections for energy bin groups were obtained using MCNP6 Monte Carlo simulations. We have made studies at the at the Dry Tube of RECH-1 obtaining fluxes of 1.5(4) x 10(13) cm(-2) s(-1) for the thermal neutron energy region, 1.9(5) x 10(12) cm(-2) s(-1) for the epithermal neutron energy region, and 4.3(11) x 10(11) cm(-2) s(-1) for the fast neutron energy region.
|
|
|
IGISOL Collaboration(Briz, J. A. et al), Algora, A., Tain, J. L., Guadilla, V., Agramunt, J., Estevez, E., et al. (2016). Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra determination. Acta Phys. Pol. B, 47(3), 755–762.
Abstract: The contribution of each fission fragment to the reactor antineutrino spectra was determined using the summation method based on the existing information on fission yields and decay data contained in nuclear databases and the reactor evolution code MURE. The beta decay of some of the main contributors has been studied using the Total Absorption Spectroscopy (TAS) technique during two experimental campaigns at the IGISOL facility, in Jyvaskyla (Finland). Results on the decay of Rb-92, the most important contributor in the 4-8 MeV energy region are reported. The status of the analysis of the second experiment is presented as well.
|
|
|
Fujita, Y., Rubio, B., Molina, F., Adachi, T., Fujita, H., Blank, B., et al. (2016). The Tz = ±1 → 0 and ±2 →±1 Mirror Gamow–Teller transitions in pf-shell nuclei. Acta Phys. Pol. B, 47(3), 867–881.
Abstract: Gamow-Teller (GT) transitions are the most common weak-interaction processes in the Universe. They play important roles in various processes of nucleosynthesis, for example, in the rapid proton-capture process (rp-process). In the pf-shell region, the rp-process runs through neutron-deficient nuclei with T-z = -2, -1, and 0 mainly by means of GT and Fermi transitions, where T-z is the z component of isospin T defined by T-z = (N = Z)/2. Under the assumption of isospin symmetry, mirror nuclei with reversed Z and N numbers, and thus with opposite signs of T-z, have the same structure. Therefore, symmetry is also expected for the GT transitions starting from and ending up in mirror nuclei. We have been studying the T-z = -2 -> -1 and -1 -> 0 GT transitions in beta decays, while those from stable T-z = +2 and +1 nuclei by means of hadronic (He-3; t) charge-exchange (CE) reactions. The results from these studies are compared in order to examine the mirror-symmetry structure in nuclei. In addition, these results are combined for the better understanding of GT transitions in the pf-shell region.
|
|
|
Orrigo, S. E. A. et al, Rubio, B., Gelletly, W., Agramunt, J., Algora, A., & Molina, F. (2016). beta decay of the exotic T-z =-2 nuclei Fe-48, Ni-52, and Zn-56. Phys. Rev. C, 93(4), 044336–18pp.
Abstract: The results of a study of the beta decays of three proton-rich nuclei with T-z = -2, namely Fe-48, Ni-52, and Zn-56, produced in an experiment carried out at GANIL, are reported. In all three cases we have extracted the half-lives and the total beta-delayed proton emission branching ratios. We have measured the individual beta-delayed protons and beta-delayed. rays and the branching ratios of the corresponding levels. Decay schemes have been determined for the three nuclei, and new energy levels are identified in the daughter nuclei. Competition between beta-delayed protons and. rays is observed in the de-excitation of the T = 2 isobaric analog states in all three cases. Absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. In addition, we discuss in detail the data analysis taking as a test case Zn-56, where the exotic beta-delayed gamma-proton decay has been observed.
|
|
|
Ganioglu, E. et al, Rubio, B., Algora, A., Estevez-Aguado, E., & Molina, F. (2016). High-resolution study of Gamow-Teller transitions in the Ti-48(He-3,t)V-48 reaction. Phys. Rev. C, 93(6), 064326–10pp.
Abstract: In this work we have studied T-z = +2 -> +1, Gamow-Teller (GT) transitions in the Ti-48(He-3, t)V-48 chargeexchange reaction at 140 MeV/nucleon and 0 degrees at the Research Center for Nuclear Physics, Osaka. From the high-resolution facility, consisting of a high-dispersion beamline and the Grand Raiden spectrometer, the spectrum had an energy resolution of 21 keV, among the best achieved. Individual GT transitions were observed and GT strength was derived for each state populated up to an excitation energy of 12 MeV. The total sum of the B(GT) strength observed in discrete states was 4.0, which is 33% of the sum-rule-limit value of 12. The results were compared with the results of shell-model calculations carried out with the GXPF1J interaction. The measured B(GT) distribution was also compared with that obtained in the (He-3, t) charge-exchange reaction on Ti-47. On the assumption of isospin symmetry the beta spectrum of the T-z = -2 nucleus Fe-48 was deduced from the observed spectrum in the Ti-48(He-3, t)V-48 reaction and this predicted spectrum was compared with the measured one.
|
|
|
Orrigo, S. E. A. et al, Rubio, B., Gelletly, W., Agramunt, J., Algora, A., & Molina, F. (2016). Observation of the 2(+) isomer in Co-52. Phys. Rev. C, 94(4), 044315–8pp.
Abstract: We report the first observation of the 2(+) isomer in Co-52, produced in the beta decay of the 0(+), Ni-52 ground state. We have observed three. rays at 849, 1910, and 5185 keV characterizing the beta de-excitation of the isomer. We have measured a half-life of 102(6) ms for the isomeric state. The Fermi and Gamow-Teller transition strengths for the beta decay of Co-52m to Fe-52 have been determined. We also add new information on the beta decay of the 6(+), Co-52 ground state, for which we have measured a half-life of 112(3) ms.
|
|