Kucuk, L. et al, Orrigo, S. E. A., Montaner-Piza, A., Rubio, B., Gelletly, W., Algora, A., et al. (2017). Half-life determination of T-z =-1 and T-z =-1/2 proton-rich nuclei and the beta decay of Zn-58. Eur. Phys. J. A, 53(6), 134–10pp.
Abstract: We have measured the beta-decay half-lives of 16 neutron-deficient nuclei with T-z = -1/2 and -1, ranging from chromium to germanium. They were produced in an experiment carried out at GANIL and optimized for the production of Zn-58, for which in addition we present the decay scheme and absolute Fermi and Gamow-Teller transition strengths. Since all of these nuclei lie on the rp-process pathway, the T-1/2 values are important ingredients for the rp-process reaction flow calculations and for models of X-ray bursters.
|
Morales, A. I., Algora, A., Molina, F., & Rubio, B. (2014). Half-Life Systematics across the N=126 Shell Closure: Role of First-Forbidden Transitions in the beta Decay of Heavy Neutron-Rich Nuclei. Phys. Rev. Lett., 113(2), 022702–5pp.
Abstract: This Letter reports on a systematic study of beta-decay half-lives of neutron-rich nuclei around doubly magic Pb-208. The lifetimes of the 126-neutron shell isotone Pt-204 and the neighboring Ir200-202, Pt-203, Au-204 are presented together with other 19 half-lives measured during the “stopped beam” campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden beta strength reveal significant deviations for most of the nuclei with N < 126. In contrast, theories including a fully microscopic treatment of allowed and first-forbidden transitions reproduce more satisfactorily the trend in the measured half-lives for the nuclei in this region, where the r-process pathway passes through during beta decay back to stability.
|
Ganioglu, E. et al, Algora, A., Estevez-Aguado, E., Molina, F., & Rubio, B. (2013). High-resolution study of Gamow-Teller transitions in the Ti-47(He-3, t)V-47 reaction. Phys. Rev. C, 87(1), 014321–12pp.
Abstract: Given the importance of Gamow-Teller (GT) transitions in nuclear structure and astrophysical nuclear processes, we have studied T-z = +3/2 -> +1/2, GT transitions starting from the Ti-47 nucleus in the (He-3, t) charge-exchange reaction at 0 degrees and at an intermediate incident energy of 140 MeV/nucleon. The experiments were carried out at the Research Center for Nuclear Physics (RCNP), Osaka, using the high-resolution facility with a high-dispersion beam line and the Grand-Raiden spectrometer. With an energy resolution of 20 keV, individual GT transitions were observed and GT strength was derived for each state populated up to an excitation energy (E-x) of 12.5 MeV. The GT strength was widely distributed from low excitation energy up to 12.5 MeV, where we had to stop the analysis because of the high level density. The distribution of the GT strengths was compared with the results of shell model calculations using the GXPF1 interaction. The calculations could reproduce the experimental GT distributions well. The GT transitions from the ground state of Ti-47 and the M1 transitions from the isobaric analog state in V-47 to the same low-lying states in V-47 are analogous. It was found that the ratios of GT transition strengths to the ground state, the 0.088-MeV state, and the 0.146-MeV state are similar to the ratios of the strengths of the analogous M1 transitions from the isobaric analog state (IAS) to these states. The measured distribution of the GT strengths was also compared with those starting from the T-z = +3/2 nucleus K-41 to the T-z = +1/2 nucleus Ca-41.
|
Ganioglu, E. et al, Rubio, B., Algora, A., Estevez-Aguado, E., & Molina, F. (2016). High-resolution study of Gamow-Teller transitions in the Ti-48(He-3,t)V-48 reaction. Phys. Rev. C, 93(6), 064326–10pp.
Abstract: In this work we have studied T-z = +2 -> +1, Gamow-Teller (GT) transitions in the Ti-48(He-3, t)V-48 chargeexchange reaction at 140 MeV/nucleon and 0 degrees at the Research Center for Nuclear Physics, Osaka. From the high-resolution facility, consisting of a high-dispersion beamline and the Grand Raiden spectrometer, the spectrum had an energy resolution of 21 keV, among the best achieved. Individual GT transitions were observed and GT strength was derived for each state populated up to an excitation energy of 12 MeV. The total sum of the B(GT) strength observed in discrete states was 4.0, which is 33% of the sum-rule-limit value of 12. The results were compared with the results of shell-model calculations carried out with the GXPF1J interaction. The measured B(GT) distribution was also compared with that obtained in the (He-3, t) charge-exchange reaction on Ti-47. On the assumption of isospin symmetry the beta spectrum of the T-z = -2 nucleus Fe-48 was deduced from the observed spectrum in the Ti-48(He-3, t)V-48 reaction and this predicted spectrum was compared with the measured one.
|
Fujita, Y. et al, Algora, A., Estevez-Aguado, E., Molina, F., & Rubio, B. (2013). High-resolution study of T-z =+2 ->+1 Gamow-Teller transitions in the Ca-44(3He,t)Sc-44 reaction. Phys. Rev. C, 88(1), 014308–18pp.
Abstract: In order to study the Gamow-Teller (GT) transitions from the T-z = +2 nucleus Ca-44 to the T-z = +1 nucleus Sc-44, where T-z is the z component of isospin T, we performed the (p, n)-type (He-3, t) charge-exchange (CE) reaction at 140 MeV/nucleon and the scattering angles 0 degrees and 2.5 degrees. An energy resolution of 28 keV, that was realized by applying matching techniques to the magnetic spectrometer system, allowed the study of fragmented states. The GT transition strengths, B(GT), were derived up to the excitation energy (E-x) of 13.7 MeV assuming the proportionality between cross sections and B(GT) values. The total sum of B(GT) values in discrete states was 3.7, which was 31% of the sum-rule-limit value of 12. Shell model calculations using the GXPF1J interaction could reproduce the gross features of the experimental B(GT) distribution, but not the fragmentation of the strength. By introducing the concepts of isospin, properties of isospin analogous transitions and states were investigated. (i) Assuming isospin symmetry, the T-z = +2 -> +1 and T-z = -2 -> -1 mirror GT transitions should have the same properties, where the latter can be studied in the beta decay of Cr-44 to V-44. First, we confirmed that the beta-decay half-life T-1/2 of Cr-44 can be reproduced using the B(GT) distribution from the Ca-44(He-3, t) measurement. Then, the 0 degrees, (3He, t) spectrum was modified to deduce the “beta-decay spectrum” and it was compared with the delayed-proton spectrum from the Cr-44 beta decay. The two spectra were mostly in agreement for the GT excitations, but suppression of the proton decay was found for the T = 2 isobaric analog state (IAS). (ii) Starting from the T = 2 ground state of 44Ca, the (3He, t) can excite GT states (state populated by GT transitions) with T = 1, 2, and 3. On the other hand, the Ca-44(p, p') reaction can excite spin-M1 states (states populated by spin-M1 transitions) with T = 2 and 3 that are analogous to the T = 2 and 3 GT states, respectively. By comparing the spectra from these two reactions, a T value of 2 is suggested for several GT states in the E-x = 11.5-13.7 MeV region. (iii) It has been suggested that the T = 2, J(pi) = 0(+) double isobaric analog state (DIAS) at 9.338 MeV in the T-z = 0 nucleus Ti-44 forms an isospin-mixed doublet with a subsidiary 0(+) state at 9.298 MeV. Since no corresponding state was found in the T-z = +1 nucleus Sc-44, we suggest T = 0 for the subsidiary state.
|
Grodner, E. et al, Gadea, A., Algora, A., Agramunt, J., Domingo-Pardo, C., Molina, F., et al. (2014). Hindered Gamow-Teller Decay to the Odd-Odd N = Z Ga-62: Absence of Proton-Neutron T=0 Condensate in A=62. Phys. Rev. Lett., 113(9), 092501–5pp.
Abstract: Search for a new kind of superfluidity built on collective proton-neutron pairs with aligned spin is performed studying the Gamow-Teller decay of the T = 1, J(pi) = 0(+) ground state of Ge-62 into excited states of the odd-odd N = Z nucleus Ga-62. The experiment is performed at GSI Helmholtzzentrum fur Shwerionenforshung with the Ge-62 ions selected by the fragment separator and implanted in a stack of Si-strip detectors, surrounded by the RISING Ge array. A half-life of T-1/2 = 2 82.9(14) ms is measured for the Ge-62 ground state. Six excited states of Ga-62, populated below 2.5 MeV through Gamow-Teller transitions, are identified. Individual Gamow-Teller transition strengths agree well with theoretical predictions of the interacting shell model and the quasiparticle random phase approximation. The absence of any sizable low-lying Gamow-Teller strength in the reported beta-decay experiment supports the hypothesis of a negligible role of coherent T = 0 proton-neutron correlations in Ga-62.
|
Algora, A. et al, Jordan, D., Tain, J. L., Rubio, B., Agramunt, J., Perez-Cerdan, A. B., et al. (2011). Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements. J. Korean Phys. Soc., 59(2), 1479–1482.
Abstract: The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaskyla, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.
|
Orrigo, S. E. A. et al, Rubio, B., Agramunt, J., Algora, A., & Molina, F. (2015). β-delayed γ-proton decay in 56Zn: analysis of the charged-particle spectrum. Acta Phys. Pol. B, 46(3), 709–712.
Abstract: A study of the beta decay of the proton-rich T-z = 2 nucleus Zn-56 has been reported in a recent publication. A rare and exotic decay mode, beta-delayed gamma-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focussing on the charged particle spectrum.
|
Al-Dahan, N. et al, Algora, A., Molina, F., & Rubio, B. (2012). Multiple beta(-) decaying states in Re-194: Shape evolution in neutron-rich osmium isotopes. Phys. Rev. C, 85(3), 034301–9pp.
Abstract: beta decays from heavy, neutron-rich nuclei with A similar to 190 have been investigated following their production via the relativistic projectile fragmentation of an E/A = 1 GeV Pb-208 primary beam on a similar to 2.5 g/cm(2) Be-9 target. The reaction products were separated and identified using the GSI FRagment Separator (FRS) and stopped in the RISING active stopper. gamma decays were observed and correlated with these secondary ions on an event-by-event basis such that gamma-ray transitions following from both internal (isomeric) and beta decays were recorded. A number of discrete, beta-delayed gamma-ray transitions associated with beta decays from Re-194 to excited states in Os-194 have been observed, including previously reported decays from the yrast I-pi = (6(+)) state. Three previously unreported gamma-ray transitions with energies 194, 349, and 554 keV are also identified; these transitions are associated with decays from higher spin states in Os-194. The results of these investigations are compared with theoretical predictions from Nilsson multi-quasiparticle (MQP) calculations. Based on lifetime measurements and the observed feeding pattern to states in Os-194, it is concluded that there are three beta(-)-decaying states in Re-194.
|
Fujita, Y. et al, Algora, A., Estevez-Aguado, E., Molina, F., & Rubio, B. (2014). Observation of Low- and High-Energy Gamow-Teller Phonon Excitations in Nuclei. Phys. Rev. Lett., 112(11), 112502–5pp.
Abstract: Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 “f-shell” nuclei in (He-3, t) charge-exchange reactions. In the Ca-42 -> Sc-42 reaction, most of the GT strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6-11 MeV region. In the Fe-54 -> Co-54 reaction, the high-energy GT phonon excitation mainly carries the GT strength. The existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.
|