Al-Dahan, N. et al, Algora, A., Molina, F., & Rubio, B. (2012). Multiple beta(-) decaying states in Re-194: Shape evolution in neutron-rich osmium isotopes. Phys. Rev. C, 85(3), 034301–9pp.
Abstract: beta decays from heavy, neutron-rich nuclei with A similar to 190 have been investigated following their production via the relativistic projectile fragmentation of an E/A = 1 GeV Pb-208 primary beam on a similar to 2.5 g/cm(2) Be-9 target. The reaction products were separated and identified using the GSI FRagment Separator (FRS) and stopped in the RISING active stopper. gamma decays were observed and correlated with these secondary ions on an event-by-event basis such that gamma-ray transitions following from both internal (isomeric) and beta decays were recorded. A number of discrete, beta-delayed gamma-ray transitions associated with beta decays from Re-194 to excited states in Os-194 have been observed, including previously reported decays from the yrast I-pi = (6(+)) state. Three previously unreported gamma-ray transitions with energies 194, 349, and 554 keV are also identified; these transitions are associated with decays from higher spin states in Os-194. The results of these investigations are compared with theoretical predictions from Nilsson multi-quasiparticle (MQP) calculations. Based on lifetime measurements and the observed feeding pattern to states in Os-194, it is concluded that there are three beta(-)-decaying states in Re-194.
|
Algora, A. et al, Jordan, D., Tain, J. L., Rubio, B., Agramunt, J., Perez-Cerdan, A. B., et al. (2011). Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements. J. Korean Phys. Soc., 59(2), 1479–1482.
Abstract: The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaskyla, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.
|
Algora, A. et al, Jordan, D., Tain, J. L., Rubio, B., Agramunt, J., Perez-Cerdan, A. B., et al. (2010). Reactor Decay Heat in Pu-239: Solving the gamma Discrepancy in the 4-3000-s Cooling Period. Phys. Rev. Lett., 105(20), 202501–4pp.
Abstract: The beta feeding probability of Tc-102,Tc- 104,Tc- 105,Tc- 106,Tc- 107, Mo-105, and Nb-101 nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the gamma component of the decay heat for Pu-239 in the 4-3000 s range.
|
Algora, A. et al, Valencia, E., Tain, J. L., Jordan, M. D., Agramunt, J., Rubio, B., et al. (2014). Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure. Nucl. Data Sheets, 120, 12–15.
Abstract: An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br-87,Br-88 using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
|
Denis Bacelar, A. M. et al, Algora, A., Molina, F., & Rubio, B. (2013). The population of metastable states as a probe of relativistic-energy fragmentation reactions. Phys. Lett. B, 723(4-5), 302–306.
Abstract: Isomeric ratios have been measured for high-spin states in Po-198,200,206,208(84), At-208,209,210,211(85), Rn-210,211,212,213,214(86), Fr-208,211,212,213,214(87), Ra-210,211,212,214,215(88), and Ac-215(89) following the projectile fragmentation of a 1 AGeV U-238 beam by a Be-9 target at GSI Helmholtzzentrum fur Schwerionenforschung. The fragments were separated in the fragment separator (FRS) and identified by means of energy loss and time-of-flight techniques. They were brought to rest at the centre of the RISING gamma-ray detector array and intensities of gamma rays emitted in the decay of isomeric states with half-lives between 100 ns and 40 μs and spin values up to 55/2 (h) over bar were used to obtain the corresponding isomeric ratios. The data are compared to theoretical isomeric ratios calculated in the framework of the abrasion-ablation model. Large experimental enhancements are obtained for high-spin isomers in comparison to expected values.
|
Fujita, H. et al, Algora, A., Estevez-Aguado, E., Molina, F., & Rubio, B. (2019). Experimental study of Gamow-Teller transitions via the high-energy-resolution O-18(He-3, t)F-18 reaction: Identification of the low-energy “super” -Gamow-Teller state. Phys. Rev. C, 100(3), 034618–13pp.
Abstract: Using the high-resolution O-18(He-3, t)F-18 reaction at 0 degrees and at 140 MeV/nucleon, Gamow-Teller (GT) transitions were studied. A high energy resolution of 31 keV was achieved by applying dispersion matching techniques. The main part of the observed GT transition strength is concentrated in the transition to the F-18 ground state (g.s.). The absolute values of the reduced GT transition strengths, B(GT), were derived up to E-x = 12 MeV assuming proportionality between the B(GT) values and the reaction cross sections at 0 degrees. The B(GT) value obtained from the beta decay of F-18 (g.s.) -> O-18 (g.s.) was used to determine the proportionality constant. A total B(GT) of 4.06(5) was found and 76(1)% of the strength is concentrated to the ground state of F-18. The obtained B(GT) values were compared with those from the O-18(p, n) F-18 reaction and the mirror symmetric beta(+) decay of Ne-18 -> F-18. The candidates for 1(+) states with isospin T = 1 were identified by comparison with the O-18(p, p') data. The results of shell-model and quasiparticle-random-phase approximation calculations suggest constructive contributions of various configurations to the F-18 ground state, suggesting that this state is the low-energy super GT state.
|
Fujita, Y. et al, Algora, A., Estevez-Aguado, E., Molina, F., & Rubio, B. (2014). Observation of Low- and High-Energy Gamow-Teller Phonon Excitations in Nuclei. Phys. Rev. Lett., 112(11), 112502–5pp.
Abstract: Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 “f-shell” nuclei in (He-3, t) charge-exchange reactions. In the Ca-42 -> Sc-42 reaction, most of the GT strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6-11 MeV region. In the Fe-54 -> Co-54 reaction, the high-energy GT phonon excitation mainly carries the GT strength. The existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.
|
Fujita, Y. et al, Algora, A., Estevez-Aguado, E., Molina, F., & Rubio, B. (2013). High-resolution study of T-z =+2 ->+1 Gamow-Teller transitions in the Ca-44(3He,t)Sc-44 reaction. Phys. Rev. C, 88(1), 014308–18pp.
Abstract: In order to study the Gamow-Teller (GT) transitions from the T-z = +2 nucleus Ca-44 to the T-z = +1 nucleus Sc-44, where T-z is the z component of isospin T, we performed the (p, n)-type (He-3, t) charge-exchange (CE) reaction at 140 MeV/nucleon and the scattering angles 0 degrees and 2.5 degrees. An energy resolution of 28 keV, that was realized by applying matching techniques to the magnetic spectrometer system, allowed the study of fragmented states. The GT transition strengths, B(GT), were derived up to the excitation energy (E-x) of 13.7 MeV assuming the proportionality between cross sections and B(GT) values. The total sum of B(GT) values in discrete states was 3.7, which was 31% of the sum-rule-limit value of 12. Shell model calculations using the GXPF1J interaction could reproduce the gross features of the experimental B(GT) distribution, but not the fragmentation of the strength. By introducing the concepts of isospin, properties of isospin analogous transitions and states were investigated. (i) Assuming isospin symmetry, the T-z = +2 -> +1 and T-z = -2 -> -1 mirror GT transitions should have the same properties, where the latter can be studied in the beta decay of Cr-44 to V-44. First, we confirmed that the beta-decay half-life T-1/2 of Cr-44 can be reproduced using the B(GT) distribution from the Ca-44(He-3, t) measurement. Then, the 0 degrees, (3He, t) spectrum was modified to deduce the “beta-decay spectrum” and it was compared with the delayed-proton spectrum from the Cr-44 beta decay. The two spectra were mostly in agreement for the GT excitations, but suppression of the proton decay was found for the T = 2 isobaric analog state (IAS). (ii) Starting from the T = 2 ground state of 44Ca, the (3He, t) can excite GT states (state populated by GT transitions) with T = 1, 2, and 3. On the other hand, the Ca-44(p, p') reaction can excite spin-M1 states (states populated by spin-M1 transitions) with T = 2 and 3 that are analogous to the T = 2 and 3 GT states, respectively. By comparing the spectra from these two reactions, a T value of 2 is suggested for several GT states in the E-x = 11.5-13.7 MeV region. (iii) It has been suggested that the T = 2, J(pi) = 0(+) double isobaric analog state (DIAS) at 9.338 MeV in the T-z = 0 nucleus Ti-44 forms an isospin-mixed doublet with a subsidiary 0(+) state at 9.298 MeV. Since no corresponding state was found in the T-z = +1 nucleus Sc-44, we suggest T = 0 for the subsidiary state.
|
Fujita, Y., Rubio, B., Adachi, T., Blank, B., Fujita, H., Gelletly, W., et al. (2015). Gamow-Teller excitations studied by weak and strong interactions. Acta Phys. Pol. B, 46(3), 657–668.
Abstract: Studying weak nuclear responses, especially the Gamow-Teller (GT) transitions starting from stable as well as unstable nuclei, provide crucial and critical information on nuclear structure. Therefore, the study of GT transitions is a key issue in nuclear physics and also nuclear-astrophysics. Under the assumption of isospin symmetry, it is expected that the structure of mirror nuclei and the GT transitions starting from their ground states are identical. We have studied the corresponding GT transitions starting from T-z = +/- 1 and +/- 2 p f -shell nuclei, respectively, by means of hadronic (He-3,t) charge-exchange reactions and mirror beta decays. The results on GT strength distributions measured in beta decays and (He-3,t) reactions performed at an intermediate incident energy of 140 MeV/nucleon and 0 degrees are compared. The combined results help provide an understanding of nuclear structure of nuclei far-from-stability.
|
Fujita, Y., Rubio, B., Molina, F., Adachi, T., Fujita, H., Blank, B., et al. (2016). The Tz = ±1 → 0 and ±2 →±1 Mirror Gamow–Teller transitions in pf-shell nuclei. Acta Phys. Pol. B, 47(3), 867–881.
Abstract: Gamow-Teller (GT) transitions are the most common weak-interaction processes in the Universe. They play important roles in various processes of nucleosynthesis, for example, in the rapid proton-capture process (rp-process). In the pf-shell region, the rp-process runs through neutron-deficient nuclei with T-z = -2, -1, and 0 mainly by means of GT and Fermi transitions, where T-z is the z component of isospin T defined by T-z = (N = Z)/2. Under the assumption of isospin symmetry, mirror nuclei with reversed Z and N numbers, and thus with opposite signs of T-z, have the same structure. Therefore, symmetry is also expected for the GT transitions starting from and ending up in mirror nuclei. We have been studying the T-z = -2 -> -1 and -1 -> 0 GT transitions in beta decays, while those from stable T-z = +2 and +1 nuclei by means of hadronic (He-3; t) charge-exchange (CE) reactions. The results from these studies are compared in order to examine the mirror-symmetry structure in nuclei. In addition, these results are combined for the better understanding of GT transitions in the pf-shell region.
|