T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., & Molina Bueno, L. (2021). Improved constraints on neutrino mixing from the T2K experiment with 3.13 x 10(21) protons on target. Phys. Rev. D, 103(11), 112008–59pp.
Abstract: The T2K experiment reports updated measurements of neutrino and antineutrino oscillations using both appearance and disappearance channels. This result comes from an exposure of 14.9(16.4) x 10(20) protons on target in neutrino (antineutrino) mode. Significant improvements have been made to the neutrino interaction model and far detector reconstruction. An extensive set of simulated data studies have also been performed to quantify the effect interaction model uncertainties have on the T2K oscillation parameter sensitivity. T2K performs multiple oscillation analyses that present both frequentist and Bayesian intervals for the Pontecorvo-Maki-Nakagawa-Sakata parameters. For fits including a constraint on sin(2)theta(13) from reactor data and assuming normal mass ordering T2K measures sin(2)theta(13) = 0.53(-0.04)(+0.03) and Delta m(32)(2) = (2.45 +/- 0.07) x 10(-3) eV(2) c(-4). The Bayesian analyses show a weak preference for normal mass ordering 89)% posterior probability) and the upper sin(2)theta(13) octant (80% posterior probability), with a uniform prior probability assumed in both cases. The T2K data exclude CP conservation in neutrino oscillations at the 2 sigma level.
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., & Molina Bueno, L. (2021). First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single-pi(+) production channel containing at least one proton. Phys. Rev. D, 103(11), 112009–27pp.
Abstract: This paper reports the first T2K measurement of the transverse kinematic imbalance in the single-pi(+) production channel of neutrino interactions. We measure the differential cross sections in the muonneutrino charged-current interaction on hydrocarbon with a single pi(+) and at least one proton in the final state, at the ND280 off axis near detector of the T2K experiment. The extracted cross sections are compared to the predictions from different neutrino-nucleus interaction event generators. Overall, the results show a preference for models that have a more realistic treatment of nuclear medium effects including the initial nuclear state and final-state interactions.
|
Kirpichnikov, D. V., Sieber, H., Molina Bueno, L., Crivelli, P., & Kirsanov, M. M. (2021). Probing hidden sectors with a muon beam: Total and differential cross sections for vector boson production in muon bremsstrahlung. Phys. Rev. D, 104(7), 076012–13pp.
Abstract: Vector bosons, such as dark photon A' or Z', can couple to muons and be produced in the bremsstrahlung reaction mu(-) + N -> mu(-) + N + A'(Z'). Their possible subsequent invisible decay can be detected in fixed target experiments through missing energy/momentum signature. In such experiments, not only is the energy transfer to A'(Z') important but also the recoil muon angle psi μ0. In this paper, we derive the total and the double differential cross sections involved in this process using the phase space Weizsacker-Williams and improved Weizsacker-Williams approximations, as well as using exact-tree-level calculations. As an example, we compare the derived cross sections and resulting signal yields in the NA64 μexperiment that uses a 160 GeV muon beam at the CERN Super Proton Synchrotron accelerator. We also discuss its impact on the NA64 μexpected sensitivity to explore the (g – 2)(mu) anomaly favored region with a Z' boson considering 10(12) muons accumulated on target.
|
NA64 Collaboration(Cazzaniga, C. et al), & Molina Bueno, L. (2021). Probing the explanation of the muon (g-2) anomaly and thermal light dark matter with the semi-visible dark photon channel. Eur. Phys. J. C, 81(10), 959–6pp.
Abstract: We report the results of a search for a new vector boson (A') decaying into two dark matter particles chi 1 chi 2 of different mass. The heavier chi(2) particle subsequently decays to chi 1 and an off-shell Dark Photon A'* -> e(+)e(-). For a sufficiently largemass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in themuon anomalous magnetic moment at Fermilab. Remark- ably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained reanalyzing the previous NA64 searches for an invisible decay A' -> chi(chi) over bar and axion-like or pseudo-scalar particles -> gamma gamma. With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for A' masses from 2m(e) up to 390 MeV and mixing parameter e between 3 x 10(-5) and 2 x 10(-2).
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2021). Search for pseudoscalar bosons decaying into e(+)e(-) pairs in the NA64 experiment at the CERN SPS. Phys. Rev. D, 104(11), L111102–5pp.
Abstract: We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e(+) e(-) perfbnned using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e(+) e(-) pairs in the nuclear transitions of Be-8 and 4 He nuclei at the invariant mass similar or equal to 17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the “visible mode” configuration with a total statistics corresponding to 8.4 x 10(10) electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter epsilon we also used the data collected in 2016-2018 in the “invisible mode” configuration of NA64 with a total statistics corresponding to 2.84 x 10(11) EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to gamma). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space m(a) – epsilon in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of epsilon in the range 2.1 x 10(-4) < epsilon < 3.2 x 10(-4) are excluded.
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2021). Improved exclusion limit for light dark matter from e(+) e(-) annihilation in NA64. Phys. Rev. D, 104(9), L091701–7pp.
Abstract: The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A' were set by the NA64 experiment for the mass region m(A') less than or similar to 250 MeV, by analyzing data from the interaction of 2.84 x 10(11) 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A' production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e(+) beam efforts.
|
DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2021). Searching for solar KDAR with DUNE. J. Cosmol. Astropart. Phys., 10(10), 065–28pp.
Abstract: The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. J. Instrum., 17(1), P01005–111pp.
Abstract: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Keywords: Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)
|
Sieber, H., Banerjee, D., Crivelli, P., Depero, E., Gninenko, S. N., Kirpichnikov, D. V., et al. (2022). Prospects in the search for a new light Z0 boson with the NA64 μexperiment at the CERN SPS. Phys. Rev. D, 105(5), 052006–9pp.
Abstract: A light Z0 vector boson coupled to the second and third lepton generations through the L μ- L tau current with mass below 200 MeV provides a very viable explanation in terms of new physics to the recently confirmed og – 2 thorn μanomaly. This boson can be produced in the bremsstrahlung reaction μN – μNZ0 after a high energy muon beam collides with a target. NA64 μis a fixed-target experiment using a 160 GeV muon beam from the CERN Super Proton Synchrotron accelerator looking for Z0 production and its subsequent decays, Z0 – invisible. In this paper, we present the study of the NA64 μsensitivity to search for such a boson. This includes a realistic beam simulation, a detailed description of the detectors and a discussion about the main potential background sources. A pilot run is scheduled in order to validate the simulation results. If those are confirmed, NA64 μwill be able to explore all the remaining parameter space which could provide an explanation for the g – 2 muon anomaly in the L μ- L tau model.
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment. Phys. Rev. D, 105(7), 072006–32pp.
Abstract: The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4 sigma (5 sigma) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3 sigma for almost all true delta(CP) values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3 sigma level with a 100 kt-MW-CY exposure for the maximally CP-violating values delta(CP) = +/-pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest.
|