|
NA64 Collaboration(Andreev, Y. M. et al), Molina Bueno, L., & Tuzi, M. (2023). Search for Light Dark Matter with NA64 at CERN. Phys. Rev. Lett., 131(16), 161801–7pp.
Abstract: Thermal dark matter models with particle chi masses below the electroweak scale can provide an explanation for the observed relic dark matter density. This would imply the existence of a new feeble interaction between the dark and ordinary matter. We report on a new search for the sub-GeV chi production through the interaction mediated by a new vector boson, called the dark photon A ' , in collisions of 100 GeV electrons with the active target of the NA64 experiment at the CERN SPS. With 9.37 x 10(11) electrons on target collected during 2016-2022 runs NA64 probes for the first time the well-motivated region of parameter space of benchmark thermal scalar and fermionic dark matter models. No evidence for dark matter production has been found. This allows us to set the most sensitive limits on the A ' couplings to photons for masses m(A ') less than or similar to 0.35 GeV, and to exclude scalar and Majorana dark matter with the chi – A ' coupling alpha(D) <= 0.1 for masses 0.001 less than or similar to m(chi) less than or similar to 0.1 GeV and 3m(chi) <= m(A ').
|
|
|
NA64 Collaboration(Cazzaniga, C. et al), & Molina Bueno, L. (2021). Probing the explanation of the muon (g-2) anomaly and thermal light dark matter with the semi-visible dark photon channel. Eur. Phys. J. C, 81(10), 959–6pp.
Abstract: We report the results of a search for a new vector boson (A') decaying into two dark matter particles chi 1 chi 2 of different mass. The heavier chi(2) particle subsequently decays to chi 1 and an off-shell Dark Photon A'* -> e(+)e(-). For a sufficiently largemass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in themuon anomalous magnetic moment at Fermilab. Remark- ably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained reanalyzing the previous NA64 searches for an invisible decay A' -> chi(chi) over bar and axion-like or pseudo-scalar particles -> gamma gamma. With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for A' masses from 2m(e) up to 390 MeV and mixing parameter e between 3 x 10(-5) and 2 x 10(-2).
|
|
|
Ponten, A., Sieber, H., Banto Oberhauser, B., Crivelli, P., Kirpichnikov, D., Gninenko, S. N., et al. (2024). Probing hidden leptonic scalar portals using the NA64 experiment at CERN. Eur. Phys. J. C, 84(10), 1035–11pp.
Abstract: In this study, we demonstrate the potential of the NA64 experiment at CERN SPS to search for New Physics processes involving e→μ transitions after the collision of 100 GeV electrons with target nuclei. A new Dark Sector leptonic portal in which a scalar boson φ could be produced in the lepton-flavor-changing bremsstrahlung-like reaction, eN→μNφ, is used as benchmark process. In this work, we develop a realistic Monte Carlo simulation of the NA64 experimental setup implementing the differential and total production cross-section computed at exact tree-level and applying the Weiszäcker-Williams phase space approximation. Using this framework, we investigate the main background sources and calculate the expected sensitivity of the experiment. The results indicate that with minor setup optimization, NA64 can probe a large fraction of the available parameter space compatible with the muon g−2 anomaly and the Dark Matter relic predictions in the context of a new Dark Sector leptonic portal with 1011 EOT. This result paves the way to the exploration of lepton-flavour-changing transitions in NA64.
|
|
|
Sieber, H., Banerjee, D., Crivelli, P., Depero, E., Gninenko, S. N., Kirpichnikov, D. V., et al. (2022). Prospects in the search for a new light Z0 boson with the NA64 μexperiment at the CERN SPS. Phys. Rev. D, 105(5), 052006–9pp.
Abstract: A light Z0 vector boson coupled to the second and third lepton generations through the L μ- L tau current with mass below 200 MeV provides a very viable explanation in terms of new physics to the recently confirmed og – 2 thorn μanomaly. This boson can be produced in the bremsstrahlung reaction μN – μNZ0 after a high energy muon beam collides with a target. NA64 μis a fixed-target experiment using a 160 GeV muon beam from the CERN Super Proton Synchrotron accelerator looking for Z0 production and its subsequent decays, Z0 – invisible. In this paper, we present the study of the NA64 μsensitivity to search for such a boson. This includes a realistic beam simulation, a detailed description of the detectors and a discussion about the main potential background sources. A pilot run is scheduled in order to validate the simulation results. If those are confirmed, NA64 μwill be able to explore all the remaining parameter space which could provide an explanation for the g – 2 muon anomaly in the L μ- L tau model.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., & Molina Bueno, L. (2021). Improved constraints on neutrino mixing from the T2K experiment with 3.13 x 10(21) protons on target. Phys. Rev. D, 103(11), 112008–59pp.
Abstract: The T2K experiment reports updated measurements of neutrino and antineutrino oscillations using both appearance and disappearance channels. This result comes from an exposure of 14.9(16.4) x 10(20) protons on target in neutrino (antineutrino) mode. Significant improvements have been made to the neutrino interaction model and far detector reconstruction. An extensive set of simulated data studies have also been performed to quantify the effect interaction model uncertainties have on the T2K oscillation parameter sensitivity. T2K performs multiple oscillation analyses that present both frequentist and Bayesian intervals for the Pontecorvo-Maki-Nakagawa-Sakata parameters. For fits including a constraint on sin(2)theta(13) from reactor data and assuming normal mass ordering T2K measures sin(2)theta(13) = 0.53(-0.04)(+0.03) and Delta m(32)(2) = (2.45 +/- 0.07) x 10(-3) eV(2) c(-4). The Bayesian analyses show a weak preference for normal mass ordering 89)% posterior probability) and the upper sin(2)theta(13) octant (80% posterior probability), with a uniform prior probability assumed in both cases. The T2K data exclude CP conservation in neutrino oscillations at the 2 sigma level.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., & Molina Bueno, L. (2021). First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single-pi(+) production channel containing at least one proton. Phys. Rev. D, 103(11), 112009–27pp.
Abstract: This paper reports the first T2K measurement of the transverse kinematic imbalance in the single-pi(+) production channel of neutrino interactions. We measure the differential cross sections in the muonneutrino charged-current interaction on hydrocarbon with a single pi(+) and at least one proton in the final state, at the ND280 off axis near detector of the T2K experiment. The extracted cross sections are compared to the predictions from different neutrino-nucleus interaction event generators. Overall, the results show a preference for models that have a more realistic treatment of nuclear medium effects including the initial nuclear state and final-state interactions.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Molina Bueno, L., & Novella, P. (2023). Measurements of neutrino oscillation parameters from the T2K experiment using 3.6 x 10^21 protons on target. Eur. Phys. J. C, 83(9), 782–50pp.
Abstract: The T2K experiment presents new measurements of neutrino oscillation parameters using 19.7(16.3) x 10(20) protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional 4.7 x 10(20) POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on sin(2) theta(13) and the impact of priors on the delta(CP) measurement. Both analyses prefer the normal mass ordering and upper octant of sin(2) theta(23) with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on sin(2) theta(13) from reactors, sin(2) theta(23) = 0.561(-0.032)(+0.021) using Feldman-Cousins corrected intervals, and Delta m(32)(2) = 2.494(-0.058)(+0.041) x 10(-3) eV(2) using constant Delta chi(2) intervals. The CP-violating phase is constrained to delta(CP) = -1.97(-0.70)(+0.97) using Feldman-Cousins corrected intervals, and delta(CP) = 0, pi is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than 2 sigma credible level using a flat prior in delta(CP), and just below 2 sigma using a flat prior in sin delta(CP). When the external constraint on sin(2) nu(13) is removed, sin(2) theta(13) = 28.0(-6.5)(+2.8) x 10(-3), in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Molina Bueno, L., & Novella, P. (2023). Updated T2K measurements of muon neutrino and antineutrino disappearance using 3.6 x 10^21 protons on target. Phys. Rev. D, 108(7), 072011–10pp.
Abstract: Muon neutrino and antineutrino disappearance probabilities are identical in the standard three-flavor neutrino oscillation framework, but CPT violation and nonstandard interactions can violate this symmetry. In this work we report the measurements of sin2 theta 23 and Delta m232 independently for neutrinos and antineutrinos. The aforementioned symmetry violation would manifest as an inconsistency in the neutrino and antineutrino oscillation parameters. The analysis discussed here uses a total of 1.97 x 1021 and 1.63 x 1021 protons on target taken with a neutrino and antineutrino beam respectively, and benefits from improved flux and cross section models, new near-detector samples and more than double the data reducing the overall uncertainty of the result. No significant deviation is observed, consistent with the standard neutrino oscillation picture.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Molina Bueno, L., & Novella, P. (2023). Measurements of the νμ and bar(ν)μ-induced coherent charged pion production cross sections on 12C by the T2K experiment. Phys. Rev. D, 108(9), 092009–15pp.
Abstract: We report an updated measurement of the nu(mu)-induced, and the first measurement of the (nu) over bar (mu)- induced coherent charged pion production cross section on C-12 nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final- state phase space for which p(mu,pi) > 0.2 GeV, cos(theta(mu)) > 0.8 and cos(theta(pi)) > 0.6, and at a mean ( anti)neutrino energy of 0.85 GeVusing the T2K near detector. The measured nu(mu) charged current coherent pion production flux-averaged cross section on C-12 is (2.98 +/- 0.37(stat) +/- 0.31(syst)(-0.00)(+0.49)(Q(2) model)) x 10(-40) cm(2). The new measurement of the (nu) over bar (mu)-induced cross section on C-12 is (3.05 +/- 0.71(stat) +/- 0.39(syst)(-0.00)(+-0.74) (Q(2) model)) x 10(-40) cm(2). The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Molina Bueno, L., & Novella, P. (2023). First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K. Phys. Rev. D, 108(11), 112009–32pp.
Abstract: This paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV, respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result.
|
|