|
Alvarez, M., Cantero, J., Czakon, M., Llorente, J., Mitov, A., & Poncelet, R. (2023). NNLO QCD corrections to event shapes at the LHC. J. High Energy Phys., 03(3), 129–24pp.
Abstract: In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.
|
|
|
Juste, A., Mantry, S., Mitov, A., Penin, A., Skands, P., Varnes, E., et al. (2014). Determination of the top quark mass circa 2013: methods, subtleties, perspectives. Eur. Phys. J. C, 74(10), 3119–14pp.
Abstract: We present an up-to-date overview of the problem of top quark mass determination. We assess the need for precision in the top mass extraction in the LHC era together with the main theoretical and experimental issues arising in precision top mass determination. We collect and document existing results on top mass determination at hadron colliders and map the prospects for future precision top mass determination at e(+)e(-) colliders. We present a collection of estimates for the ultimate precision of various methods for top quark mass extraction at the LHC.
|
|