Affolder, A. et al, Garcia, C., Lacasta, C., Marco, R., Marti-Garcia, S., Miñano, M., et al. (2011). Silicon detectors for the sLHC. Nucl. Instrum. Methods Phys. Res. A, 658(1), 11–16.
Abstract: In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages.
|
ATLAS and CMS Collaborations(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments. J. High Energy Phys., 05(5), 088–81pp.
Abstract: This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.
|
ATLAS and CMS Collaborations(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Castillo, F. L., Castillo Gimenez, V., et al. (2020). Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at root s=8 TeV. J. High Energy Phys., 08(8), 051–67pp.
Abstract: The combination of measurements of the W boson polarization in top quark decays performed by the ATLAS and CMS collaborations is presented. The measurements are based on proton-proton collision data produced at the LHC at a centre-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of about 20 fb(-1)for each experiment. The measurements used events containing one lepton and having different jet multiplicities in the final state. The results are quoted as fractions of W bosons with longitudinal (F-0), left-handed (F-L), or right-handed (F-R) polarizations. The resulting combined measurements of the polarization fractions are F-0= 0.693 +/- 0.014 and F-L= 0.315 +/- 0.011. The fractionF(R)is calculated from the unitarity constraint to be F-R=-0.008 +/- 0.007. These results are in agreement with the standard model predictions at next-to-next-to-leading order in perturbative quantum chromodynamics and represent an improvement in precision of 25 (29)% for F-0(F-L) with respect to the most precise single measurement. A limit on anomalous right-handed vector (V-R), and left- and right-handed tensor (g(L), g(R)) tWb couplings is set while fixing all others to their standard model values. The allowed regions are [-0.11,0.16] for V-R, [-0.08,0.05] for g(L), and [-0.04,0.02] for g(R), at 95% confidence level. Limits on the corresponding Wilson coefficients are also derived.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2023). Measurement of the inclusive t(t)over-bar production cross section in the lepton plus jets channel in pp collisions at √s=7 TeV with the ATLAS detector using support vector machines. Phys. Rev. D, 108(3), 032014–34pp.
Abstract: A measurement of the top quark pair-production cross section in the lepton + jets decay channel is presented. It is based on 4.6 fb(-1) of root s = 7 TeV pp collision data collected during 2011 by the ATLAS experiment at the CERN Large Hadron Collider. A three-class, multidimensional event classifier based on support vector machines is used to differentiate t (T) over bar events from backgrounds. The tt production cross section is found to be sigma(t (t) over bar) = 168.5 +/- 0.7(stat)(-5.9)(+6.2) (syst)(-3.2)(+3.4) (lumi) pb. The result is consistent with the Standard Model prediction based on QCD calculations at next-to-next-to-leading order.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2021). Measurement of the relative B-c(+/-)/B-+/- production cross section with the ATLAS detector at root s=8 TeV. Phys. Rev. D, 104(1), 012010–26pp.
Abstract: The total cross section and differential cross sections for the production of B-c(+/-) mesons, times their branching fraction to J/psi pi(+/-), are measured relative to those for the production of B-+/- mesons, times their branching fraction to J/psi K-+/-. The data used for this study correspond to an integrated luminosity of 20.3 fb(-1) of pp collisions recorded by the ATLAS detector at the Large Hadron Collider in 2012 at a center-of-mass energy of root s = 8 TeV. The measurement is performed differentially in bins of transverse momentum p(T) for 13 GeV < p(T)(B-c(+/-)) < 22 GeV and p(T)(B-c(+/-)) > 22 GeV and in bins of rapidity y for vertical bar y vertical bar < 0.75 and 0.75 < vertical bar y vertical bar < 2.3. The relative cross section times branching fraction for the full range p(T) > 13 GeV and vertical bar y vertical bar < 2.3 is (0.34 +/- 0.04(stat) (+0.06)(-0.02 sys) +/- 0.01(lifetime))%. The differential measurements suggest that the production cross section of the B-c(+/-) decreases faster with p(T) than the production cross section of the B-+/-, while no significant dependence on rapidity is observed.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2021). Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector. Phys. Lett. B, 816, 136204–28pp.
Abstract: The associated production of a Higgs boson with a W or Z boson decaying into leptons and where the Higgs boson decays to a b (b) over bar pair is measured in the high vector-boson transverse momentum regime, above 250 GeV, with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 139 fb(-1), were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of root s = 13 TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is 0.72(-0.36)(+0.39) corresponding to an observed (expected) significance of 2.1 (2.7) standard deviations. Cross-sections of associated production of a Higgs boson decaying into b quark pairs with a W or Z gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250-400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2020). Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in root s=13 TeV pp collisions using the ATLAS detector. Eur. Phys. J. C, 80(2), 123–33pp.
Abstract: A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb(-1) of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at v s = 13 TeV. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via eitherW bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2020). Measurement of long-range two-particle azimuthal correlations in Z-boson tagged pp collisions at root s=8 and 13 TeV. Eur. Phys. J. C, 80(1), 64–32pp.
Abstract: Results are presented from the measurement by ATLAS of long-range (|Delta eta|>2) dihadron angular correlations in root s=8 and 13 TeV pp collisions containing a Z boson. The analysis is performed using 19.4 fb-1 of root s=8 TeV data recorded during Run 1 of the LHC and 36.1 fb-1 of root s=13 TeV data recorded during Run 2. Two-particle correlation functions are measured as a function of relative azimuthal angle over the relative pseudorapidity range 2<|Delta eta|<5 for different intervals of charged-particle multiplicity and transverse momentum. The measurements are corrected for the presence of background charged particles generated by collisions that occur during one passage of two colliding proton bunches in the LHC. Contributions to the two-particle correlation functions from hard processes are removed using a template-fitting procedure. Sinusoidal modulation in the correlation functions is observed and quantified by the second Fourier coefficient of the correlation function, v2,2, which in turn is used to obtain the single-particle anisotropy coefficient v2. The v2 values in the Z-tagged events, integrated over 0.5<pT<5 GeV, are found to be independent of multiplicity and <mml:msqrt>s</mml:msqrt>, and consistent within uncertainties with previous measurements in inclusive pp collisions. As a function of charged-particle pT, the Z-tagged and inclusive v2 values are consistent within uncertainties for pT<3 GeV.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2020). Measurements of top-quark pair spin correlations in the e mu channel at root s=13 TeV using pp collisions in the ATLAS detector. Eur. Phys. J. C, 80(8), 754–43pp.
Abstract: A measurement of observables sensitive to spin correlations in tt<overbar></mml:mover> production is presented, using 36.1 fb-1 of pp collision data at <mml:msqrt>s</mml:msqrt>=13 TeV recorded with the ATLAS detector at the Large Hadron Collider. Differential cross-sections are measured in events with exactly one electron and one muon with opposite-sign electric charge as a function of the azimuthal opening angle and the absolute difference in pseudorapidity between the electron and muon candidates in the laboratory frame. The azimuthal opening angle is also measured as a function of the invariant mass of the t<mml:mover accent=“true”>t<mml:mo stretchy=“false”><overbar></mml:mover> system. The measured differential cross-sections are compared to predictions by several NLO Monte Carlo generators and fixed-order calculations. The observed degree of spin correlation is somewhat higher than predicted by the generators used. The data are consistent with the prediction of one of the fixed-order calculations at NLO, but agree less well with higher-order predictions. Using these leptonic observables, a search is performed for pair production of supersymmetric top squarks decaying into Standard Model top quarks and light neutralinos. Top squark masses between 170 and 230 GeV are largely excluded at the 95% confidence level for kinematically allowed values of the neutralino mass.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2020). Measurement of J/psi production in association with a W-+/- boson with pp data at 8 TeV. J. High Energy Phys., 01(1), 095–38pp.
Abstract: A measurement of the production of a prompt J/psi meson in association with a W-+/- boson with W-+/- -> μnu and J/psi -> mu(+)mu(-) is presented for J/psi transverse momenta in the range 8.5-150 GeV and rapidity |y(J/psi)| < 2.1 using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of s = 8 TeV and correspond to an integrated luminosity of 20.3 fb(-1). The ratio of the prompt J/psi plus W-+/- cross-section to the inclusive W-+/- cross-section is presented as a differential measurement as a function of J/psi transverse momenta and compared with theoretical predictions using different double-parton-scattering cross-sections.
|