Antonelli, M., Cirigliano, V., Isidori, G., Mescia, F., Moulson, M., Neufeld, H., et al. (2010). An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays. Eur. Phys. J. C, 69(3-4), 399–424.
Abstract: We present a global analysis of leptonic and semileptonic kaon decay data, including all recent results published by the BNL-E865, KLOE, KTeV, ISTRA+ and NA48 experiments. This analysis, in conjunction with precise lattice calculations of the hadronic matrix elements now available, leads to a very precise determination of broken vertical bar V-us broken vertical bar and allows us to perform several stringent tests of the Standard Model.
|
Bertone, V., Carrasco, N., Ciuchini, M., Dimopoulos, P., Frezzotti, R., Gimenez, V., et al. (2013). Kaon mixing beyond the SM from N-f=2 tmQCD and model independent constraints from the UTA. J. High Energy Phys., 03(3), 089–53pp.
Abstract: We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S = 2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of N-f = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of the renormalization constants has been performed non-perturbatively in the RI-MOM scheme. Based on simulations at four values of the lattice spacing and a number of quark masses we have extrapolated/interpolated our results to the continuum limit and physical light/strange quark masses.
|
Constantinou, M., Dimopoulos, P., Frezzotti, R., Jansen, K., Gimenez, V., Lubicz, V., et al. (2011). B-K-parameter from N-f=2 twisted mass lattice QCD. Phys. Rev. D, 83(1), 014505–20pp.
Abstract: We present an unquenched N-f = 2 lattice computation of the B-K parameter which controls K-0 – (K) over bar (0) oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B-K parameter which is both multiplicatively renormalizable and O(a) improved. Employing the nonperturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B-K(RGI) = 0.729 +/- 0.030, a number well in line with the existing quenched and unquenched determinations.
|