|
Bazeia, D., Lobao, A. S., Losano, L., Menezes, R., & Olmo, G. J. (2015). Braneworld solutions for modified theories of gravity with nonconstant curvature. Phys. Rev. D, 91(12), 124006–11pp.
Abstract: We study braneworld models in the presence of scalar field in a five-dimensional geometry with a single extra dimension of infinite extent, with gravity modified to include a function of the Ricci scalar. We develop a procedure that allows us to obtain an analytical solution for the braneworld configuration in a diversity of models, in the much harder case where the Ricci scalar is a nonconstant quantity.
|
|
|
Bazeia, D., Losano, L., Menezes, R., Olmo, G. J., & Rubiera-Garcia, D. (2015). Robustness of braneworld scenarios against tensorial perturbations. Class. Quantum Gravity, 32(21), 215011–10pp.
Abstract: Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.
|
|
|
Bazeia, D., Losano, L., Menezes, R., Olmo, G. J., & Rubiera-Garcia, D. (2015). Thick brane in f(R) gravity with Palatini dynamics. Eur. Phys. J. C, 75, 569–10pp.
Abstract: This work deals with modified gravity in five dimensional spacetime. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR^n, where the small parameter ϵ controls the deviation from the standard thick brane case.
|
|