Home | [1–10] << 11 12 13 14 15 16 17 >> |
![]() |
Escudero, M., Ramirez, H., Boubekeur, L., Giusarma, E., & Mena, O. (2016). The present and future of the most favoured inflationary models after Planck 2015. J. Cosmol. Astropart. Phys., 02(2), 020–21pp.
Abstract: The value of the tensor-to-scalar ratio r in the region allowed by the latest Planck 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current Planck temperature and polarization data. Rather than focusing only on r, we focus as well on the running of the primordial power spectrum, alpha(s) and the running thereof, beta(s). If future cosmological measurements, as those from the COrE mission, confirm the current best-fit value for beta(s) greater than or similar to 10(-2) as the preferred one, it will be possible to rule-out the most favoured inflationary models.
|
Di Valentino, E., Giusarma, E., Mena, O., Melchiorri, A., & Silk, J. (2016). Cosmological limits on neutrino unknowns versus low redshift priors. Phys. Rev. D, 93(8), 083527–11pp.
Abstract: Recent cosmic microwave background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth tau. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may differ appreciably depending on the choices adopted in the analyses. With regard to future improvements in the priors on the reionization optical depth, a value of tau = 0.05 +/- 0.01, motivated by astrophysical estimates of the reionization redshift, would lead to Sigma m(nu) < 0.0926 eV at 90% C.L., when combining the full Planck measurements, baryon acoustic oscillation, and Planck clusters data, thereby opening the window to unravel the neutrino mass hierarchy with existing cosmological probes.
|
Di Valentino, E., Gariazzo, S., Gerbino, M., Giusarma, E., & Mena, O. (2016). Dark radiation and inflationary freedom after Planck 2015. Phys. Rev. D, 93(8), 083523–28pp.
Abstract: The simplest inflationary models predict a primordial power spectrum (PPS) of the curvature fluctuations that can be described by a power-law function that is nearly scale invariant. It has been shown, however, that the low-multipole spectrum of the cosmic microwave background anisotropies may hint at the presence of some features in the shape of the scalar PPS, which could deviate from its canonical power-law form. We study the possible degeneracies of this nonstandard PPS with the active neutrino masses, the effective number of relativistic species, and a sterile neutrino or a thermal axion mass. The limits on these additional parameters are less constraining in a model with a nonstandard PPS when including only the temperature autocorrelation spectrum measurements in the data analyses. The inclusion of the polarization spectra noticeably helps in reducing the degeneracies, leading to results that typically show no deviation from the Lambda CDM model with a standard power-law PPS. These findings are robust against changes in the function describing the noncanonical PPS. Albeit current cosmological measurements seem to prefer the simple power-law PPS description, the statistical significance to rule out other possible parametrizations is still very poor. Future cosmological measurements are crucial to improve the present PPS uncertainties.
|
Vincent, A. C., Palomares-Ruiz, S., & Mena, O. (2016). Analysis of the 4-year IceCube high-energy starting events. Phys. Rev. D, 94(2), 023009–18pp.
Abstract: After four years of data taking, the IceCube neutrino telescope has detected 54 high-energy starting events (HESE, or contained-vertex events) with deposited energies above 20 TeV. They represent the first detection of high-energy extraterrestrial neutrinos and, therefore, the first step in neutrino astronomy. To study the energy, flavor, and isotropy of the astrophysical neutrino flux arriving at Earth, we perform different analyses of two different deposited energy intervals, [10 TeV-10 PeV] and [60 TeV-10 PeV]. We first consider an isotropic unbroken power-law spectrum and constrain its shape, normalization, and flavor composition. Our results are in agreement with the preliminary IceCube results, although we obtain a slightly softer spectrum. We also find that current data are not sensitive to a possible neutrino-antineutrino asymmetry in the astrophysical flux. Then, we show that although a two-component power-law model leads to a slightly better fit, it does not represent a significant improvement with respect to a single power-law flux. Finally, we analyze the possible existence of a north-south asymmetry, hinted at by the combination of the HESE sample with the throughgoing muon data. If we use only HESE data, the scarce statistics from the Northern Hemisphere does not allow us to reach any conclusive answer, which indicates that the HESE sample alone is not driving the potential north-south asymmetry.
|
Giusarma, E., Gerbino, M., Mena, O., Vagnozzi, S., Ho, S., & Freese, K. (2016). Improvement of cosmological neutrino mass bounds. Phys. Rev. D, 94(8), 083522–8pp.
Abstract: The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos Sigma m(nu) < 0.183 eV, among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at similar to 70% C.L., an upper limit on Sigma m(nu) of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to Sigma m(nu) < 0.176 eV. Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on Sigma m(nu) when possible variations in the former two quantities are addressed.
|
Lopez-Honorez, L., Mena, O., Moline, A., Palomares-Ruiz, S., & Vincent, A. C. (2016). The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes. J. Cosmol. Astropart. Phys., 08(8), 004–40pp.
Abstract: Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-alpha pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of similar to 100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from similar to 100 MeV.
Keywords: dark matter theory; intergalactic media; reionization
|
Boubekeur, L., Giusarma, E., Mena, O., & Ramirez, H. (2015). Phenomenological approaches of inflation and their equivalence. Phys. Rev. D, 91(8), 083006–8pp.
Abstract: In this work, we analyze two possible alternative and model-independent approaches to describe the inflationary period. The first one assumes a general equation of state during inflation due to Mukhanov, while the second one is based on the slow-roll hierarchy suggested by Hoffman and Turner. We find that, remarkably, the two approaches are equivalent from the observational viewpoint, as they single out the same areas in the parameter space, and agree with the inflationary attractors where successful inflation occurs. Rephrased in terms of the familiar picture of a slowly rolling, canonically normalized scalar field, the resulting inflaton excursions in these two approaches are almost identical. Furthermore, once the Galactic dust polarization data from Planck are included in the numerical fits, inflaton excursions can safely take sub-Planckian values.
|
Boubekeur, L., Giusarma, E., Mena, O., & Ramirez, H. (2015). Do current data prefer a nonminimally coupled inflaton? Phys. Rev. D, 91(10), 103004–6pp.
Abstract: We examine the impact of a nonminimal coupling of the inflaton to the Ricci scalar, 1/2 xi R phi(2), on the inflationary predictions. Such a nonminimal coupling is expected to be present in the inflaton Lagrangian on fairly general grounds. As a case study, we focus on the simplest inflationary model governed by the potential V proportional to phi(2), using the latest combined 2015 analysis of Planck and the BICEP2/Keck Array. We find that the presence of a coupling xi is favored at a significance of 99% C.L., assuming that nature has chosen the potential V proportional to phi(2) to generate the primordial perturbations and a number of e-foldings N = 60. Within the context of the same scenario, we find that the value of xi is different from zero at the 2 sigma level. When considering the cross-correlation polarization spectra from the BICEP2/Keck Array and Planck, a value of r = 0.038(-0.030)(+0.039) is predicted in this particular nonminimally coupled scenario. Future cosmological observations may therefore test these values of r and verify or falsify the nonminimally coupled model explored here.
|
Palomares-Ruiz, S., Vincent, A. C., & Mena, O. (2015). Spectral analysis of the high-energy IceCube neutrinos. Phys. Rev. D, 91(10), 103008–28pp.
Abstract: A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the similar to 30 TeV-3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1: 1: 1)(circle plus), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron (anti) neutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.
|
Di Valentino, E., Gariazzo, S., Giusarma, E., & Mena, O. (2015). Robustness of cosmological axion mass limits. Phys. Rev. D, 91(12), 123505–12pp.
Abstract: We present the cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a “piecewise cubic Hermite interpolating polynomial” (PCHIP). When using cosmic microwave background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of sigma(8) and Omega(m) from the 2013 Planck cluster catalog on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favoring a similar to 1 eV axion mass, regardless of the model adopted for the primordial power spectrum. However, in general, such a preference disappears if the sum of the three active neutrino masses is also considered as a free parameter in our numerical analyses, due to the strong correlation between the masses of these two hot thermal relics.
|