Home | [1–10] << 11 12 13 14 15 16 17 >> |
![]() |
Ternes, C. A., Gariazzo, S., Hajjar, R., Mena, O., Sorel, M., & Tortola, M. (2019). Neutrino mass ordering at DUNE: An extra nu bonus. Phys. Rev. D, 100(9), 093004–10pp.
Abstract: We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being operational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti) neutrinos travel, provide ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through Earth. Crucially, muon capture by argon provides excellent charge tagging, allowing us to disentangle the neutrino and antineutrino signature. This is an important extra benefit of having a liquid argon time projection chamber as a far detector, that could render an similar to 3.5 sigma extraction of the mass ordering after approximately 7 yr of exposure.
|
de Salas, P. F., Gariazzo, S., Mena, O., Ternes, C. A., & Tortola, M. (2018). Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects. Front. Astron. Space Sci., 5, 36–50pp.
Abstract: The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.
|
Gariazzo, S., Archidiacono, M., de Salas, P. F., Mena, O., Ternes, C. A., & Tortola, M. (2018). Neutrino masses and their ordering: global data, priors and models. J. Cosmol. Astropart. Phys., 03(3), 011–22pp.
Abstract: We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions.
|
Agarwalla, S. K., Blennow, M., Fernandez-Martinez, E., & Mena, O. (2011). Neutrino probes of the nature of light dark matter. J. Cosmol. Astropart. Phys., 09(9), 004–19pp.
Abstract: Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.
Keywords: dark matter experiments; neutrino detectors
|
Salvatelli, V., Marchini, A., Lopez-Honorez, L., & Mena, O. (2013). New constraints on coupled dark energy from the Planck satellite experiment. Phys. Rev. D, 88(2), 023531–9pp.
Abstract: We present new constraints on coupled dark energy from the recent measurements of the cosmic microwave background anisotropies from the Planck satellite mission. We found that a coupled dark energy model is fully compatible with the Planck measurements, deriving a weak bound on the dark matter-dark energy coupling parameter xi = -0.49(-0.31)(+0.19) at 68% C.L. Moreover if Planck data are fitted to a coupled dark energy scenario, the constraint on the Hubble constant is relaxed to H-0 = 72.1(-2.3)(+3.2) km/s/Mpc, solving the tension with the Hubble Space Telescope (HST) value. We show that a combined PLANCK + HST analysis provides significant evidence for coupled dark energy finding a nonzero value for the coupling parameter xi, with -0.90 < xi < -0.22 at 95% C.L. We also consider the combined constraints from the Planck data plus the baryon acoustic oscillation measurements of the 6dF Galaxy Survey, the Sloan Digital Sky Survey and the Baron Oscillation Spectroscopic Survey.
|
Giare, W., Di Valentino, E., Melchiorri, A., & Mena, O. (2021). New cosmological bounds on hot relics: axions and neutrinos. Mon. Not. Roy. Astron. Soc., 505(2), 2703–2711.
Abstract: Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyse two different thermal processes within a realistic mixed hot dark matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel, we derive our most constraining bounds on the hot relic masses m(a) < 7.46 eV and Sigma m(nu) < 0.114 eV both at 95 percent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions, and remaining in the range of validity of the chiral perturbation theory, our most constraining bounds are improved to m(a) < 0.91 eV and Sigma m(nu) < 0.105 eV, both at 95 percent CL. Interestingly, in both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering prediction. If future terrestrial double beta decay and/or long-baseline neutrino experiments find that the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed thermal axion window. Our results therefore, strongly support multi messenger searches of axions and neutrino properties, together with joint analyses of their expected sensitivities.
|
de Putter, R., Mena, O., Giusarma, E., Ho, S., Cuesta, A., Seo, H. J., et al. (2012). New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies. Astrophys. J., 761(1), 12–12pp.
Abstract: We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg(2), thus probing a volume of 3 h(-3) Gpc(3) and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses Sigma m nu < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call “CMASS,” with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small (similar to 1 sigma-1.5 sigma) bias in Omega(DM)h(2). For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e. g., Sigma m(nu) < 0.38 eV (95% CL) for WMAP+HST+CMASS (l(max) = 200). We also study the dependence of the neutrino bound on the multipole range (l(max) = 150 versus l(max) = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature Omega(K), while a second companion paper presents a measurement of the scale of baryon acoustic oscillations from the same data set. All three works are based on the catalog by Ross et al.
|
Nunes, R. C., Vagnozzi, S., Kumar, S., Di Valentino, E., & Mena, O. (2022). New tests of dark sector interactions from the full-shape galaxy power spectrum. Phys. Rev. D, 105(12), 123506–18pp.
Abstract: We explore the role of redshift-space galaxy clustering data in constraining nongravitational interactions between dark energy (DE) and dark matter (DM), for which state-of-the-art limits have so far been obtained from late-time background measurements. We use the joint likelihood for prereconstruction full-shape (FS) galaxy power spectrum and postreconstruction Baryon Acoustic Oscillation (BAO) measurements from the BOSS DR12 sample, alongside Cosmic Microwave Background (CMB) data from Planck: from this dataset combination we infer H0 1/4 68.02+0.49 and the 2?? lower limit ?? > ???0.12, among the strongest limits ever reported on the DM-DE coupling strength ?? for the particular model considered. Contrary to what has been observed for the ??CDM model and simple extensions thereof, we find that the CMB + FS combination returns tighter constraints compared to the CMB + BAO one, suggesting that there is valuable additional information contained in the broadband of the power spectrum. We test this finding by running additional CMB-free analyses and removing sound horizon information, and discuss the important role of the equality scale in setting constraints on DM-DE interactions. Our results reinforce the critical role played by redshift-space galaxy clustering measurements in the epoch of precision cosmology, particularly in relation to tests of nonminimal dark sector extensions of the ??CDM model.
|
Salvado, J., Mena, O., Palomares-Ruiz, S., & Rius, N. (2017). Non-standard interactions with high-energy atmospheric neutrinos at IceCube. J. High Energy Phys., 01(1), 141–30pp.
Abstract: Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μtau-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal epsilon(mu tau), with the 90% credible interval given by -6.0 x 10(-3) < epsilon(mu tau) < 5.4 x 10(-3), comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of epsilon(mu tau) near its current bound.
Keywords: Neutrino Physics; Solar and Atmospheric Neutrinos
|
Gariazzo, S., Martinez-Mirave, P., Mena, O., Pastor, S., & Tortola, M. (2023). Non-unitary three-neutrino mixing in the early Universe. J. Cosmol. Astropart. Phys., 03(3), 046–18pp.
Abstract: Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
Keywords: cosmological neutrinos; neutrino properties; neutrino theory
|