toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Gariazzo, S., Mena, O., Ramirez, H., & Boubekeur, L. (2017). Primordial power spectrum features in phenomenological descriptions of inflation. Phys. Dark Universe, 17, 38–45.
toggle visibility
Di Valentino, E., Melchiorri, A., Mena, O., & Vagnozzi, S. (2020). Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions. Phys. Dark Universe, 30, 100666–12pp.
toggle visibility
Yang, W. Q., Di Valentino, E., Pan, S., & Mena, O. (2021). Emergent Dark Energy, neutrinos and cosmological tensions. Phys. Dark Universe, 31, 100762–9pp.
toggle visibility
Vagnozzi, S., Di Valentino, E., Gariazzo, S., Melchiorri, A., Mena, O., & Silk, J. (2021). The galaxy power spectrum take on spatial curvature and cosmic concordance. Phys. Dark Universe, 33, 100851–17pp.
toggle visibility
Gariazzo, S., Mena, O., & Schwetz, T. (2023). Quantifying the tension between cosmological and terrestrial constraints on neutrino masses. Phys. Dark Universe, 40, 101226–8pp.
toggle visibility
Gerbino, M. et al, Martinez-Mirave, P., Mena, O., Tortola, M., & Valle, J. W.. (2023). Synergy between cosmological and laboratory searches in neutrino physics. Phys. Dark Universe, 42, 101333–36pp.
toggle visibility
Ghedini, P., Hajjar, R., & Mena, O. (2024). Redshift-space distortions corner interacting dark energy. Phys. Dark Universe, 46, 101671–10pp.
toggle visibility
Das, C. R., Mena, O., Palomares-Ruiz, S., & Pascoli, S. (2013). Determining the dark matter mass with DeepCore. Phys. Lett. B, 725(4-5), 297–301.
toggle visibility
Di Valentino, E., Giusarma, E., Lattanzi, M., Mena, O., Melchiorri, A., & Silk, J. (2016). Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data. Phys. Lett. B, 752, 182–185.
toggle visibility
Gerbino, M., Lattanzi, M., Mena, O., & Freese, K. (2017). A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling. Phys. Lett. B, 775, 239–250.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva