Di Valentino, E., Melchiorri, A., Mena, O., & Vagnozzi, S. (2020). Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions. Phys. Dark Universe, 30, 100666–12pp.
Abstract: We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H-0 from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces the H-0 tension to a level which could possibly be compatible with a statistical fluctuation. The very same model also significantly reduces the Omega(m) – sigma(8) tension between CMB and cosmic shear measurements. Interactions between the dark sectors of our Universe remain therefore a promising joint solution to these persisting cosmological tensions.
|
Yang, W. Q., Di Valentino, E., Pan, S., & Mena, O. (2021). Emergent Dark Energy, neutrinos and cosmological tensions. Phys. Dark Universe, 31, 100762–9pp.
Abstract: The Phenomenologically Emergent Dark Energy model, a dark energy model with the same number of free parameters as the flat Lambda CDM, has been proposed as a working example of a minimal model which can avoid the current cosmological tensions. A straightforward question is whether or not the inclusion of massive neutrinos and extra relativistic species may spoil such an appealing phenomenological alternative. We present the bounds on M-nu and N-eff and comment on the long standing H-0 and sigma(8) tensions within this cosmological framework with a wealth of cosmological observations. Interestingly, we find, at 95% confidence level, and with the most complete set of cosmological observations, M-nu similar to 0.21(-0.14)(+0.15) eV and N-eff = 3.03 +/- 0.32 i.e. an indication for a non-zero neutrino mass with a significance above 2 sigma. The well known Hubble constant tension is considerably easened, with a significance always below the 2 sigma level. (C) 2020 Elsevier B.V. All rights reserved.
|
Vagnozzi, S., Di Valentino, E., Gariazzo, S., Melchiorri, A., Mena, O., & Silk, J. (2021). The galaxy power spectrum take on spatial curvature and cosmic concordance. Phys. Dark Universe, 33, 100851–17pp.
Abstract: The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.
|
Gariazzo, S., Mena, O., & Schwetz, T. (2023). Quantifying the tension between cosmological and terrestrial constraints on neutrino masses. Phys. Dark Universe, 40, 101226–8pp.
Abstract: The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.
|
Gerbino, M. et al, Martinez-Mirave, P., Mena, O., Tortola, M., & Valle, J. W.. (2023). Synergy between cosmological and laboratory searches in neutrino physics. Phys. Dark Universe, 42, 101333–36pp.
Abstract: The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories.
|
Ghedini, P., Hajjar, R., & Mena, O. (2024). Redshift-space distortions corner interacting dark energy. Phys. Dark Universe, 46, 101671–10pp.
Abstract: Despite the fact that the Lambda CDM model has been highly successful over the last few decades in providing an accurate fit to a broad range of cosmological and astrophysical observations, different intriguing tensions and anomalies emerged at various statistical levels. Given the fact that the dark energy and the dark matter sectors remain unexplored, the answer to some of the tensions may rely on modifications of these two dark sectors. This manuscript explores the important role of the growth of structure in constraining non-standard cosmologies. In particular, we focus on the interacting dark energy (IDE) scenario, where dark matter and dark energy interact non-gravitationally. We aim to place constraints on the phenomenological parameters of these alternative models, by considering different datasets related to a number of cosmological measurements, to achieve a complementary analysis. A special emphasis is devoted to redshift-space distortion measurements (RSD), whose role in constraining beyond the standard paradigm models has not been recently highlighted. These observations indeed have a strong constraining power, rendering all parameters to their Lambda CDM canonical values, and therefore leaving little room for the IDE models explored here.
|
Di Valentino, E. et al, & Mena, O. (2021). Cosmology intertwined III: f sigma(8) and S-8. Astropart Phys., 131, 102604–6pp.
Abstract: The standard A Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few statistically significant tensions and anomalies were found in the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension between Planck data and weak lensing measurements and redshift surveys, in the value of the matter energy density Omega(m), and the amplitude sigma(8) (or the growth rate f sigma(8)) of cosmic structure. We list a few promising models for solving this tension, and discuss the importance of trying to fit multiple cosmological datasets with complete physical models, rather than fitting individual datasets with a few handpicked theoretical parameters.
|
Di Valentino, E. et al, & Mena, O. (2021). Snowmass2021-Letter of interest cosmology intertwined II: The hubble constant tension. Astropart Phys., 131, 102605–8pp.
Abstract: The current cosmological probes have provided a fantastic confirmation of the standard A Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the 4.4 sigma – tension between the Planck estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade's experiments will be crucial.
|
Di Valentino, E. et al, & Mena, O. (2021). Snowmass2021-Letter of interest cosmology intertwined I: Perspectives for the next decade. Astropart Phys., 131, 102606–4pp.
Abstract: The standard Lambda Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H-0 value, the sigma S-8(8) tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions.
|
Di Valentino, E. et al, & Mena, O. (2021). Snowmass2021-Letter of interest cosmology intertwined IV: The age of the universe and its curvature. Astropart Phys., 131, 102607–5pp.
Abstract: A precise measurement of the curvature of the Universe is of prime importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early-Universe scenarios. Recent observations, while broadly consistent with a spatially flat standard A Cold Dark Matter (ACDM) model, show tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be at play, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat ACDM model.
|