Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–17] |
![]() |
Lopez Honorez, L., Mena, O., & Panotopoulos, G. (2010). Higher-order coupled quintessence. Phys. Rev. D, 82(12), 123525–7pp.
Abstract: We study a coupled quintessence model in which the interaction with the dark-matter sector is a function of the quintessence potential. Such a coupling can arise from a field dependent mass term for the dark-matter field. The dynamical analysis of a standard quintessence potential coupled with the interaction explored here shows that the system possesses a late-time accelerated attractor. In light of these results, we perform a fit to the most recent Supernovae Ia, Cosmic Microwave Background, and Baryon Acoustic Oscillation data sets. Constraints arising from weak equivalence principle violation arguments are also discussed.
|
Ho, S. et al, de Putter, R., & Mena, O. (2012). Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications. Astrophys. J., 761(1), 14–24pp.
Abstract: The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg(2), and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg(2) and probes a volume of 3 h(-3) Gpc(3), making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of similar to 15%, with a bin size of delta(l) = 10 on scales of the baryon acoustic oscillations (BAOs; at l similar to 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat Lambda CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H-0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find Omega(Lambda) = 0.73 +/- 0.019 and H-0 to be 70.5 +/- 1.6 s(-1) Mpc(-1) km. For an open Lambda CDM model, when combined with WMAP7 + HST, we find Omega(K) = 0.0035 +/- 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+ SN, we find w = -1.071 +/- 0.078, and H-0 to be 71.3 +/- 1.7 s(-1) Mpc(-1) km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent constraints on cosmological models when compared with pre-systematic correction power spectra in the angular scales of interest. The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering Data allow a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity of initial conditions, and neutrino masses. Here, we refer to our companion papers for further investigations using the clustering data. Our calculation of the survey selection function, systematics maps, and likelihood function for the COSMOMC package will be released at http://portal.nersc.gov/project/boss/galaxy/photoz/.
Keywords: cosmological parameters; dark energy; dark matter; distance scale
|
Hajjar, R., Palomares-Ruiz, S., & Mena, O. (2024). Shedding light on the Δm21^2 tension with supernova neutrinos. Phys. Lett. B, 854, 138719–8pp.
Abstract: One long-standing tension in the determination of neutrino parameters is the mismatched value of the solar mass square difference, Delta m(21)(2), measured by different experiments: the reactor antineutrino experiment KamLAND finds a best fit larger than the one obtained with solar neutrino data. Even if the current tension is mild (similar to 1.5 sigma.), it is timely to explore if independent measurements could help in either closing or reassessing this issue. In this regard, we explore how a future supernova burst in our galaxy could be used to determine Delta m(21)(2) at the future Hyper-Kamiokande detector, and how this could contribute to the current situation. We study Earth matter effects for different models of supernova neutrino spectra and supernova orientations. We find that, if supernova neutrino data prefers the KamLAND best fit for Delta m(21)(2), an uncertainty similar to the current KamLAND one could be achieved. On the contrary, if it prefers the solar neutrino data best fit, the current tension with KamLAND results could grow to a significance larger than 5 sigma. Furthermore, supernova neutrinos could significantly contribute to reducing the uncertainty on sin (2)theta(12).
|
Hajjar, R., Mena, O., & Palomares-Ruiz, S. (2023). Earth tomography with supernova neutrinos at future neutrino detectors. Phys. Rev. D, 108(8), 083011–24pp.
Abstract: Earth neutrino tomography is a realistic possibility with current and future neutrino detectors, complementary to geophysics methods. The two main approaches are based on either partial absorption of the neutrino flux as it propagates through Earth (at energies about a few TeV) or on coherent Earth matter effects affecting the neutrino oscillations pattern (at energies below a few tens of GeV). In this work, we consider the latter approach, focusing on supernova neutrinos with tens of MeV. Whereas at GeVenergies, Earth matter effects are driven by the atmospheric mass-squared difference, at energies below similar to 100 MeV, it is the solar mass-squared difference that controls them. Unlike solar neutrinos, which suffer from significant weakening of the contribution to the oscillatory effect from remote structures due to the neutrino energy reconstruction capabilities of detectors, supernova neutrinos can have higher energies and, thus, can better probe Earth's interior. We shall revisit this possibility, using the most recent neutrino oscillation parameters and up-to-date supernova neutrino spectra. The capabilities of future neutrino detectors, such as DUNE, Hyper-Kamiokande, and JUNO, are presented, including the impact of the energy resolution and other factors. Assuming a supernova burst at 10 kpc, we show that the average Earth's core density could be determined within less than or similar to 10% at 1 sigma confidence level, Hyper-Kamiokande being, with its largest mass, the most promising detector to achieve this goal.
|
Giusarma, E., Gerbino, M., Mena, O., Vagnozzi, S., Ho, S., & Freese, K. (2016). Improvement of cosmological neutrino mass bounds. Phys. Rev. D, 94(8), 083522–8pp.
Abstract: The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos Sigma m(nu) < 0.183 eV, among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at similar to 70% C.L., an upper limit on Sigma m(nu) of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to Sigma m(nu) < 0.176 eV. Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on Sigma m(nu) when possible variations in the former two quantities are addressed.
|
Giusarma, E., Di Valentino, E., Lattanzi, M., Melchiorri, A., & Mena, O. (2014). Relic neutrinos, thermal axions, and cosmology in early 2014. Phys. Rev. D, 90(4), 043507–17pp.
Abstract: We present up-to-date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise baryon acoustic oscillation measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three-active-neutrino scenario, we find Sigma m(nu) < 0.22 eV at 95% C.L. from the combination of cosmic microwave background (CMB), baryon acoustic oscillation, and Hubble Space Telescope measurements of the Hubble constant. A nonzero value for the sum of the three active neutrino masses of similar to 0.3 eV is significantly favored at more than three standard deviations when adding the constraints on s 8 and Om from the Planck cluster catalog on galaxy number counts. This preference for nonzero thermal relic masses disappears almost completely in both the thermal axion and massive sterile neutrino schemes. Extra light species contribute to the effective number of relativistic degrees of freedom, parametrized via N-eff. We found that when the recent detection of B mode polarization from the BICEP2 experiment is considered, an analysis of the combined CMB data in the framework of LCDM + r models gives N-eff = 3.90 +/- 0.42, suggesting the presence of an extra relativistic relic at more than 95% C.L. from CMB-only data.
|
Giusarma, E., de Putter, R., & Mena, O. (2013). Testing standard and nonstandard neutrino physics with cosmological data. Phys. Rev. D, 87(4), 043515–9pp.
Abstract: Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.
|
Giusarma, E., de Putter, R., Ho, S., & Mena, O. (2013). Constraints on neutrino masses from Planck and Galaxy clustering data. Phys. Rev. D, 88(6), 063515–9pp.
Abstract: We present here bounds on neutrino masses from the combination of recent Planck cosmic microwave background (CMB) measurements and galaxy clustering information from the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey-III. We use the full shape of either the photometric angular clustering (Data Release 8) or the 3D spectroscopic clustering (Data Release 9) power spectrum in different cosmological scenarios. In the Lambda CDM scenario, spectroscopic galaxy clustering measurements improve significantly the existing neutrino mass bounds from Planck data. We find Sigma m(v) < 0.39 eV at 95% confidence level for the combination of the 3D power spectrum with Planck CMB data (wi lensing included) and Wilkinson Microwave Anisoptropy Probe 9-year polarization measurements. Therefore, robust neutrino mass constraints can be obtained without the addition of the prior on the Hubble constant from Hubble Space Telescope. In extended cosmological scenarios with a dark energy fluid or with nonflat geometries, galaxy clustering measurements are essential to pin down the neutrino mass bounds, providing in the majority of cases better results than those obtained from the associated measurement of the baryon acoustic oscillation scale only. In the presence of a freely varying (constant) dark energy equation of state, we find Sigma m(v) < 0.49 eV at 95% confidence level for the combination of the 3D power spectrum with Planck CMB data (with lensing included) and Wilkinson Microwave Anisoptropy Probe 9-year polarization measurements. This same data combination in nonflat geometries provides the neutrino mass bound Sigma m(v) < 0.35 eV at 95% confidence level.
|
Giusarma, E., Corsi, M., Archidiacono, M., de Putter, R., Melchiorri, A., Mena, O., et al. (2011). Constraints on massive sterile neutrino species from current and future cosmological data. Phys. Rev. D, 83(11), 115023–10pp.
Abstract: Sterile massive neutrinos are a natural extension of the standard model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states, as well as on the number of sterile states. The so-called (3 + 2) models, with three sub-eV active massive neutrinos plus two sub-eV massive sterile species, is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, big bang nucleosynthesis bounds compromise the viability of (3 + 2) models. Forecasts from future cosmological data on the active and sterile neutrino parameters are also presented. Independent measurements of the neutrino mass from tritium beta-decay experiments and of the Hubble constant could shed light on sub-eV massive sterile neutrino scenarios.
|
Giusarma, E., Archidiacono, M., de Putter, R., Melchiorri, A., & Mena, O. (2012). Sterile neutrino models and nonminimal cosmologies. Phys. Rev. D, 85(8), 083522–9pp.
Abstract: Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.
|