Albaladejo, M., Guo, F. K., Hanhart, C., Meissner, U. G., Nieves, J., Nogga, A., et al. (2017). Note on X(3872) production at hadron colliders and its molecular structure. Chin. Phys. C, 41(12), 121001–3pp.
Abstract: The production of the X (3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high pT implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process.
|
Dai, L. Y., Kang, X. W., Meissner, U. G., Song, X. Y., & Yao, D. L. (2018). Amplitude analysis of the anomalous decay eta ' -> pi(+) pi(-) gamma. Phys. Rev. D, 97(3), 036012–12pp.
Abstract: In this paper we perform an amplitude analysis of eta ' -> pi(+)pi(-)gamma and confront it with the latest BESIII data. Based on the final-state interaction theorem, we represent the amplitude in terms of an Omnes function multiplied by a form factor that corresponds to the contributions from left-hand cuts and right-hand cuts in the inelastic channels. We also take into account the isospin violation effect induced by rho-omega mixing. Our results show that the anomaly contribution is mandatory in order to explain the data. Its contribution to the decay width of Gamma(eta ' -> pi pi gamma) is larger than that induced by isospin violation. Finally we extract the pole positions of the rho and omega as well as their corresponding residues.
|
Doring, M., Meissner, U. G., Oset, E., & Rusetsky, A. (2012). Scalar mesons moving in a finite volume and the role of partial wave mixing. Eur. Phys. J. A, 48(8), 114–18pp.
Abstract: Phase shifts and resonance parameters can be obtained from finite-volume lattice spectra for interacting pairs of particles, moving with non-zero total momentum. We present a simple derivation of the method that is subsequently applied to obtain the pi pi and pi K phase shifts in the sectors with total isospin I – 0 and I – 1/2, respectively. Considering different total momenta, one obtains extra data points for a given volume that allow for a very efficient extraction of the resonance parameters in the infinite-volume limit. Corrections due to the mixing of partial waves are provided. We expect that our results will help to optimize the strategies in lattice simulations, which aim at an accurate determination of the scattering and resonance properties.
|
Doring, M., Meissner, U. G., Oset, E., & Rusetsky, A. (2011). Unitarized Chiral Perturbation Theory in a finite volume: Scalar meson sector. Eur. Phys. J. A, 47(11), 139–15pp.
Abstract: We develop a scheme for the extraction of the properties of the scalar mesons f(0)(600), f(0)(980), and a(0)(980) from lattice QCD data. This scheme is based on a two-channel chiral unitary approach with fully relativistic propagators in a finite volume. In order to discuss the feasibility of finding the mass and width of the scalar resonances, we analyze synthetic lattice data with a fixed error assigned, and show that the framework can be indeed used for an accurate determination of resonance pole positions in the multichannel scattering.
|
Doring, M., Oset, E., & Meissner, U. G. (2010). Evaluation of the polarization observables I-S and I-C in the reaction gamma p -> pi(0)eta p. Eur. Phys. J. A, 46(2), 315–323.
Abstract: We evaluate the polarization observables I-S and I-C for the reaction gamma p -> pi(0)eta p, using a chiral unitary framework developed earlier. The I-S and I-C observables have been recently measured for the first time by the CBELSA/TAPS Collaboration. The theoretical predictions of I-S and I-C, given for altogether 18 angle-dependent functions, are in good agreement with the measurements. Also, the asymmetry d Sigma/dcos theta evaluated here agrees with the data. We show the importance of the Delta(1700) D-33-resonance and its S-wave decay into eta Delta(1232). The result can be considered as a further confirmation of the dynamical nature of this resonance. At the highest energies, deviations of the predictions from the data start to become noticeable, which leaves room for additional processes and resonances such as a Delta(1940) D-33. We also point out how to further improve the calculation.
|
Du, M. L., Albaladejo, M., Fernandez-Soler, P., Guo, F. K., Hanhart, C., Meissner, U. G., et al. (2018). Towards a new paradigm for heavy-light meson spectroscopy. Phys. Rev. D, 98(9), 094018–8pp.
Abstract: Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.
|
Du, M. L., Baru, V., Guo, F. K., Hanhart, C., Meissner, U. G., Oller, J. A., et al. (2021). Revisiting the nature of the P-c pentaquarks. J. High Energy Phys., 08(8), 157–50pp.
Abstract: The nature of the three narrow hidden-charm pentaquark P-c states, i.e., P-c (4312), P-c (4440) and P-c (4457), is under intense discussion since their discovery from the updated analysis of the process Lambda(0)(b) -> I ) J/psi pK(-) by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Sigma(()(c)*()) (D) over bar (()*()) molecules, by including the Lambda(c)(D) over bar (()*()) and eta(c)p as explicit inelastic channels in addition to the J/psi p, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Sigma(()(c)*()) (D) over bar (()*()), and inelastic channels and without the Lambda(c)(D) over bar (()*()) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the Lambda(c)(D) over bar (()*()) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/psi p invariant mass distribution are consistent with the interpretation of the P-c(4312) and P-c(4440)/P-c(4457) as Sigma(c)(D) over bar and Sigma(c)(D) over bar* hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, P-c(4380), identified as a Sigma(c)*(D) over bar molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the P-c (4440) and P-c (4457) being J(P) = 3/2(-) and 1/2(-), respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the P-c (4440) and the P-c (4457) in the Sigma(()(c)*())<(D)over ( )anf eta(c)p mass distributions from Lambda(0)(b) ->( )Sigma(()(c)*()) (D) over barK(-) and Lambda(0)(b) -> eta(c)pK(-) will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the Lambda(c)(D) over bar (()*()) final states.
|
Du, M. L., Guo, F. K., Meissner, U. G., & Yao, D. L. (2017). Study of open-charm 0(+) states in unitarized chiral effective theory with one-loop potentials. Eur. Phys. J. C, 77(11), 728–16pp.
Abstract: Chiral potentials are derived for the interactions between Goldstone bosons and pseudo-scalar charmed mesons up to next-to-next-to-leading order in a covariant chiral effective field theory with explicit vector charmed-meson degrees of freedom. Using the extended-on-mass-shell scheme, we demonstrate that the ultraviolet divergences and the so-called power counting breaking terms can be properly absorbed by the low-energy constants of the chiral Lagrangians. We calculate the scattering lengths by unitarizing the one-loop potentials and fit them to the data extracted from lattice QCD. The obtained results are compared to the ones without an explicit contribution of vector charmed mesons given previously. It is found that the difference is negligible for 5-wave scattering in the threshold region. This validates the use of D-*-less one-loop potentials in the study of the pertinent scattering lengths. We search for dynamically generated open-charm states with J(P) = 0(+) as poles of the 5-matrix on various Riemann sheets. The trajectories of those poles for varying pion masses are presented as well.
|
Guo, F. K., Meissner, U. G., Nieves, J., & Yang, Z. (2016). Remarks on the P-c structures and triangle singularities. Eur. Phys. J. A, 52(10), 318–6pp.
Abstract: It was proposed that the narrow P-c(4450) structure observed by the LHCb Collaboration in the reaction Lambda(b) -> J/psi pK might be due to a triangle singularity around the chi(c1)-proton threshold at 4.45 GeV. We discuss the occurrence of a similar triangle singularity in the J/psi p invariant mass distribution for the decay Lambda(b) -> J/psi p pi, which could explain the bump around 4.45 GeV in the data. More precise measurements of this process would provide valuable information towards an understanding of the P-c structures.
|
Holz, S., Plenter, J., Xiao, C. W., Dato, T., Hanhart, C., Kubis, B., et al. (2021). Towards an improved understanding of eta -> gamma*gamma *. Eur. Phys. J. C, 81(11), 1002–15pp.
Abstract: We argue that high-quality data on the reaction e(+)e(-) -> pi(+) pi(-) eta will allow one to determine the doubly-virtual form factor eta -> gamma*gamma* in a model-independent way with controlled accuracy. This is an important step towards a reliable evaluation of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of themuon. When analyzing the existing data for e(+) e(-) -> pi(+) pi(-) eta for total energies squared k(2) > 1GeV(2), we demonstrate that the effect of the a(2) meson provides a natural breaking mechanism for the commonly employed factorization ansatz in the doubly-virtual form factor F-eta gamma*gamma* (q(2), k(2)). However, better data are needed to draw firm conclusions.
|