|
Argyropoulos, T., Catalan-Lasheras, N., Grudiev, A., Mcmonagle, G., Rodriguez-Castro, E., Syrachev, I., et al. (2018). Design, fabrication, and high-gradient testing of an X-band, traveling-wave accelerating structure milled from copper halves. Phys. Rev. Accel. Beams, 21(6), 061001–11pp.
Abstract: A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV/m at a rf breakdown rate of less than 1.5 x 10(-5) breakdowns/pulse/m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.
|
|
|
Vnuchenko, A., Esperante Pereira, D., Gimeno, B., Benedetti, S., Catalan Lasheras, N., Garlasch, M., et al. (2020). High-gradient testing of an S-band, normal-conducting low phase velocity accelerating structure. Phys. Rev. Accel. Beams, 23(8), 084801–13pp.
Abstract: A novel high-gradient accelerating structure with low phase velocity, v/c = 0.38, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC 100 MV/m high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward traveling wave (BTW) with a phase advance of 150 degrees and has an active length of 19 cm. The main objective for designing and testing this structure was to demonstrate that low velocity particles, in particular protons, can be accelerated with high gradients. In addition, the performance of this structure compared to other type of structures provides insights into the factors that limit high gradient operation. The structure was conditioned successfully to high gradient using the same protocol as for CLIC X-band structures. However, after the high power test, data analysis realized that the structure had been installed backwards, that is, the input power had been fed into what is nominally the output end of the structure. This resulted in higher peak fields at the power feed end and a steeply decreasing field profile along the structure, rather than the intended near constant field and gradient profile. A local accelerating gradient of 81 MV/m near the input end was achieved at a pulse length of 1.2 μs and with a breakdown rate (BDR) of 7.2 x 10(-7) 1 /pulse/m. The reverse configuration was accidental but the operating with this field condition gave very important insights into high-gradient behaviour and a comprehensive analysis has been carried out. A particular attention was paid to the characterization of the distribution of BD positions along the structure and within a cell.
|
|
|
Woolley, B., Burt, G., Dexter, A. C., Peacock, R., Millar, W. L., Catalan Lasheras, N., et al. (2020). High-gradient behavior of a dipole-mode rf structure. Phys. Rev. Accel. Beams, 23(12), 122002–11pp.
Abstract: A normal-conducting, X-band traveling wave structure operating in the dipole mode has been systematically high-gradient tested to gain insight into the maximum possible gradients in these types of structure. Measured structure conditioning, breakdown behavior, and achieved surface fields are reported as well as a postmortem analysis of the breakdown position and a scanning electron microscope analysis of the high-field surfaces. The results of these measurements are then compared to high-gradient results from monopole-mode cavities. Scaled to a breakdown rate of 10(-6), the cavities were found to operate at a peak electric field of 154 MV/m and a peak modified Poynting vector S-c of 5.48 MW/mm(2). The study provides important input for the further development of dipole-mode cavities for use in the Compact Linear Collider as a crab cavity and dipole-mode cavities for use in x-ray free-electron lasers as well as for studies of the fundamental processes in vacuum arcs. Of particular relevance are the unique field patterns in dipole cavities compared to monopole cavities, where the electric and magnetic fields peak in orthogonal planes, which allow the separation of the role of electric and magnetic fields in breakdown via postmortem damage observation. The azimuthal variation of breakdown crater density is measured and is fitted to sinusoidal functions. The best fit is a power law fit of exponent 6. This is significant, as it shows how breakdown probability varies over a surface area with a varying electric field after conditioning to a given peak field.
|
|