|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. J. Instrum., 17(1), P01005–111pp.
Abstract: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Keywords: Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)
|
|
|
Rout, J., Masud, M., & Mehta, P. (2017). Can we probe intrinsic CP and T violations and nonunitarity at long baseline accelerator experiments? Phys. Rev. D, 95(7), 075035–23pp.
Abstract: One of the fundamental parameters entering the neutrino oscillation framework is the leptonic CP phase delta(13), and its measurement is an important goal of the planned long baseline experiments. It should be noted that ordinary matter effects complicate the determination of this parameter, and there are studies in the literature that deal with separation of intrinsic vs extrinsic CP violation. It is important to investigate the consequences of new physics effects that can not only hamper the measurement of delta(13) but also impact the consequences of discrete symmetries such as CP, T, and unitarity in different oscillation channels. In the present work, we explore these discrete symmetries and implications on unitarity in the presence of two new physics scenarios (nonstandard interaction in propagation and the presence of sterile neutrinos) that serve as good examples of going beyond the standard scenario in different directions. We uncover the impact of new physics scenarios on disentangling intrinsic and extrinsic CP violation.
|
|
|
Masud, M., Roy, S., & Mehta, P. (2019). Correlations and degeneracies among the NSI parameters with tunable beams at DUNE. Phys. Rev. D, 99(11), 115032–19pp.
Abstract: The Deep Underground Neutrino Experiment (DUNE) is a leading experiment in neutrino physics which is presently under construction. DUNE aims to measure the yet unknown parameters in the three flavor oscillation scenario which includes discovery of leptonic CP violation, determination of the mass hierarchy and determination of the octant of theta(23). Additionally, the ancillary goals of DUNE include probing the subdominant effects induced by new physics. A widely studied new physics scenario is that of nonstandard neutrino interactions (NSI) in propagation which impacts the oscillations of neutrinos. We consider some of the essential NSI parameters impacting the oscillation signals at DUNE and explore the space of NSI parameters as well as study their correlations among themselves and with the yet unknown CP violating phase, delta appearing in the standard paradigm. The experiment utilizes a wide band beam and provides us with a unique opportunity to utilize different beam tunes at DUNE. We demonstrate that combining information from different beam tunes (low energy and medium energy) available at DUNE impacts the ability to probe some of these parameters and leads to altering the allowed regions in two-dimensional space of parameters considered.
|
|
|
DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2020). Neutrino interaction classification with a convolutional neural network in the DUNE far detector. Phys. Rev. D, 102(9), 092003–20pp.
Abstract: The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
|
|
|
Chatterjee, S. S., Masud, M., Pasquini, P., & Valle, J. W. F. (2017). Cornering the revamped BMV model with neutrino oscillation data. Phys. Lett. B, 774, 179–182.
Abstract: Using the latest global determination of neutrino oscillation parameters from [1] we examine the status of the simplest revamped version of the BMV (Babu-Ma-Valle) model, proposed in [2]. The model predicts a striking correlation between the “poorly determined” atmospheric angle 623 and CP phase Sep, leading to either maximal CP violation or none, depending on the preferred 623 octants. We determine the allowed BMV parameter regions and compare with the general three-neutrino oscillation scenario. We show that in the BMV model the higher octant is possible only at 99% C. L., a stronger rejection than found in the general case. By performing quantitative simulations of forthcoming DUNE and T2HK experiments, using only the four “well-measured” oscillation parameters and the indication for normal mass ordering, we also map out the potential of these experiments to corner the model. The resulting global sensitivities are given in a robust form, that holds irrespective of the true values of the oscillation parameters.
|
|
|
Barenboim, G., Masud, M., Ternes, C. A., & Tortola, M. (2019). Exploring the intrinsic Lorentz-violating parameters at DUNE. Phys. Lett. B, 788, 308–315.
Abstract: Neutrinos can push our search for new physics to a whole new level. What makes them so hard to be detected, what allows them to travel humongous distances without being stopped or deflected allows to amplify Planck suppressed effects (or effects of comparable size) to a level that we can measure or bound in DUNE. In this work we analyze the sensitivity of DUNE to CPT and Lorentz-violating interactions in a framework that allows a straightforward extrapolation of the bounds obtained to any phenomenological modification of the dispersion relation of neutrinos.
|
|
|
Masud, M., Bishai, M., & Mehta, P. (2019). Extricating New Physics Scenarios at DUNE with Higher Energy Beams. Sci Rep, 9, 352–9pp.
Abstract: The proposed Deep Underground Neutrino Experiment (DUNE) utilizes a wide-band on-axis tunable muon-(anti) neutrino beam with a baseline of 1300 km to search for CP violation with high precision. Given the long baseline, DUNE is also sensitive to effects due to matter induced non-standard neutrino interactions (NSI) which can interfere with the standard three-flavor oscillation paradigm. Hence it is desirable to design strategies to disentangle effects due to NSI from standard oscillations. In this article, we exploit the tunability of the DUNE neutrino beam over a wide-range of energies to devise an experimental strategy for separating oscillation effects due to NSI from the standard three-flavor oscillation scenario. Using chi(2) analysis, we obtain an optimal combination of beam tunes and distribution of run times in neutrino and anti-neutrino modes that would enable DUNE to isolate new physics scenarios from the standard. We can distinguish scenarios at 3 sigma (5 sigma) level for almost all (similar to 50%) values of delta. To the best of our knowledge, our strategy is entirely new and has not been reported elsewhere.
|
|