|
Malabarba, B. B., Khemchandani, K. P., Martinez Torres, A., & Oset, E. (2023). D1(2420) and its interactions with a kaon: Open charm states with strangeness. Phys. Rev. D, 107(3), 036016–12pp.
Abstract: In this work we present an attempt to describe the X1(2900) found by the LHCb collaboration, in the experimental data on the invariant mass spectrum of D-K+, as a three-meson molecular state of the KpD over line system. We discuss that the interactions in all the subsystems are attractive in nature, with the pD over line interaction generating over line D1(2420) and the Kp resonating as K1(1270). We find that the system can form a three-body state but with a mass higher than that of X1(2900). We investigate the KpD system too, finding that the three-body dynamics generates an isoscalar state, which can be related to D*s1(2860), and an exotic isovector state. This latter state has a mass similar to that of the X0(2900) and X1(2900) states found by LHCb, but a very small width (similar to 7.4 +/- 0.9 MeV) and necessarily requires more than two quarks to describe its properties. We hope that our findings will encourage experimental investigations of the isovector KpD state. Finally, in the pursuit of finding a description for X1(2900), we study the K over line K*D* system where over line K*D* forms 0+, 1+, and 2+ states. We do not find a state that can be associated with X1(2900).
|
|
|
Bayar, M., Martinez Torres, A., Khemchandani, K. P., Molina, R., & Oset, E. (2023). Exotic states with triple charm. Eur. Phys. J. C, 83(1), 46–9pp.
Abstract: In this work we investigate the possibility of the formation of states from the dynamics involved in the D* D* D* system by considering that two D*'s generate a JP = 1+ bound state, with isospin 0, which has been predicted in an earlier theoretical work. We solve the Faddeev equations for this system within the fixed center approximation and find the existence of J(P) = 0(-), 1(-) and 2(-) states with charm 3, isospin 1/2, masses similar to 6000 MeV, which are manifestly exotic hadrons, i.e., with a multiquark inner structure.
|
|
|
Martinez Torres, A., Khemchandani, K. P., & Oset, E. (2023). Theoretical study of the gamma d -> pi(0)eta d reaction. Phys. Rev. C, 107(2), 025202–24pp.
Abstract: We have done a theoretical study of the gamma d -> pi(0)eta d reaction starting with a realistic model for the gamma N -> pi(0)eta N reaction that reproduces cross sections and polarization observables at low energies and involves the gamma N -> Delta(1700) -> eta Delta(1232) -> eta pi N-0 process. For the coherent reaction in the deuteron we considered the impulse approximation together with the rescattering of the pions and the eta on a different nucleon than the one where they are produced. We found this second mechanism very important since it helps share between two nucleons the otherwise large momentum transfer of the reaction. Other contributions to the gamma d -> pi(0)eta d reaction, involving the gamma N -> pi(+/-)pi N-0' process, followed by the rescattering of the pi(+/-) with another nucleon to give eta and a nucleon, have also been included. We find a natural explanation, tied to the dynamics of our model, for the shift of the eta-d mass distribution to lower invariant masses, and of the pi(0)-d mass distribution to larger invariant masses, compared to a phase space calculation. We also study theoretical uncertainties related to the large momenta of the deuteron wave function involved in the process as well as to the couplings present in the model. Striking differences are found with the experimental angular distribution and further theoretical investigations might be necessary.
|
|
|
Dai, L. R., Oset, E., Feijoo, A., Molina, R., Roca, L., Martinez Torres, A., et al. (2022). Masses and widths of the exotic molecular B-(s)(()*B-)((s))(*()) states. Phys. Rev. D, 105(7), 074017–11pp.
Abstract: We study the interaction of the doubly bottom systems BB, B*B, BsB, B-s*B, B*B*, B*B-S, B*B-s*, BsBs, BsBs*, B-s*B-s* by means of vector meson exchange with Lagrangians from an extension of the local hidden gauge approach. The full s-wave scattering matrix is obtained implementing unitarity in coupled channels by means of the Bethe-Salpeter equation. We find poles below the channel thresholds for the attractively interacting channels B*B in I = 0, B-s*B – B*B-s in I = 1/2, B* B* in I = 0, and B-s*B* in I = 1/2, all of them with J(P) = 1(+). For these cases the widths are evaluated identifying the dominant source of imaginary part. We find binding energies of the order of 10-20 MeV, and the widths vary much from one system to the other: of the order of 10-100 eV for the B* B system and B-s*B – B* B-s, about 6 MeV for the B*B* system and of the order of 0.5 MeV for the B-s*B* system.
|
|
|
Martinez Torres, A., Khemchandani, K. P., Roca, L., & Oset, E. (2020). Few-body systems consisting of mesons. Few-Body Syst., 61(4), 35–16pp.
Abstract: We present a work which is meant to inspire the few-body practitioners to venture into the study of new, more exotic, systems and to hadron physicists, working mostly on two-body problems, to move in the direction of studying related few-body systems. For this purpose we devote the discussions in the introduction to show how the input two-body amplitudes can be easily obtained using techniques of the chiral unitary theory, or its extensions to the heavy quark sector. We then briefly explain how these amplitudes can be used to solve the Faddeev equations or a simpler version obtained by treating the three-body scattering as that of a particle on a fixed center. Further, we give some examples of the results obtained by studying systems involving mesons. We have also addressed the field of many meson systems, which is currently almost unexplored, but for which we envisage a bright future. Finally, we give a complete list of works dealing with unconventional few-body systems involving one or several mesons, summarizing in this way the findings on the topic, and providing a motivation for those willing to investigate such systems.
|
|
|
Oset, E., Bayar, M., Dote, A., Hyodo, T., Khemchandani, K. P., Liang, W. H., et al. (2016). Two-, Three-, Many-body Systems Involving Mesons. Multimeson Condensates. Acta Phys. Pol. B, 47(2), 357–365.
Abstract: In this paper, we review results from studies with unconventional many-hadron systems containing mesons: systems with two mesons and one baryon, three mesons, some novel systems with two baryons and one meson, and finally, systems with many vector mesons, up to six, with their spins aligned forming states of increasing spin. We show that in many cases, one has experimental counterparts for the states found, while in some other cases, they remain as predictions, which we suggest to be searched in BESIII, Belle, LHCb, FAIR and other facilities.
|
|
|
Aceti, F., Bayar, M., Oset, E., Martinez Torres, A., Khemchandani, K. P., Dias, J. M., et al. (2014). Prediction of an I=1 D(D)over-bar* state and relationship to the claimed Z(c)(3900), Z(c)(3885). Phys. Rev. D, 90(1), 016003–13pp.
Abstract: We study here the interaction of D (D) over bar* in the isospin I = 1 channel in light of recent theoretical advances that allow us to combine elements of the local hidden gauge approach with heavy quark spin symmetry. We find that the exchange of light q (q) over bar is Okubo-Zweig-Iizuka (OZI) suppressed and thus we concentrate on the exchange of heavy vectors and of two pion exchange. The latter is found to be small compared to the exchange of heavy vectors, which then determines the strength of the interaction. A barely D (D) over bar* bound state decaying into eta(c)rho and pi J/psi is found. At the same time we reanalyze the data of the BESIII experiment on e(+)e(-) -> pi(+/-)(D (D) over bar*)(-/+), from where a Z(c)(3885) state was claimed, associated to a peak in the (D (D) over bar*)(-/+) invariant mass distribution close to threshold, and we find the data compatible with a resonance with mass around 3875 MeV and width around 30 MeV. We discuss the possibility that this and the Z(c)(3900) state found at BESIII, reconfirmed at 3894 MeV at Belle, or 3885 MeV at CLEO, could all be the same state and correspond to the one that we find theoretically.
|
|
|
Oset, E., Martinez Torres, A., Khemchandani, K. P., Roca, L., & Yamagata-Sekihara, J. (2012). Two, three, many body systems involving mesons. Prog. Part. Nucl. Phys., 67(2), 455–460.
Abstract: In this talk we show recent developments on few body systems involving mesons. We report on an approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two body off shell amplitude with three body forces stemming from the same chiral Lagrangians takes place. This removal of the unphysical off shell part of the amplitudes is most welcome and renders the approach unambiguous, showing that only on shell two body amplitudes need to be used. Within this approach, systems of two mesons and one baryon are studied, reproducing properties of the low lying 1/2(+) states. On the other hand we also report on multirho and K* multirho states which can be associated to known meson resonances of high spin.
|
|
|
Xie, J. J., Martinez Torres, A., Oset, E., & Gonzalez, P. (2011). Plausible explanation for the Delta(5/2)+(2000) puzzle. Phys. Rev. C, 83(5), 055204–11pp.
Abstract: From a Faddeev calculation for the pi-(Delta rho)(N5/2)-(1675) system we show the plausible existence of three dynamically generated I (J(P)) = 3/2(5/2(+)) baryon states below 2.3 GeV, whereas only two resonances, Delta(5/2)+ (1905)( ) and Delta(5/2)+(2000)(**), are cataloged in the Particle Data Book Review. Our results give theoretical support to data analyses extracting two distinctive resonances, Lambda(5/2)+(similar to 1740) and Lambda(5/2)+(similar to 2200), from which the mass of Delta(5/2)+ (2000) is estimated. We propose that these two resonances should be cataloged instead of Delta(5/2)+(2000). This proposal gets further support from the possible assignment of the other baryon states found in the approach in the I = 1/2, 3/2 with J(P) = 1/2(+), 3/2(+), 5/(2)+ sectors to known baryonic resonances. In particular, Delta(1/2)+(1750)(*) is naturally interpreted as a pi N-1/2-(1650) bound state.
|
|
|
Martinez Torres, A., Prelovsek, S., Oset, E., & Ramos, A. (2018). Effective Field Theories in a Finite Volume. Few-Body Syst., 59(6), 139–5pp.
Abstract: In this talk I present the formalism we have used to analyze Lattice data on two meson systems by means of effective field theories. In particular I present the results obtained from a reanalysis of the lattice data on the KD(*()) systems, where the states D-s0*(2317) and D-s1*(2460) are found as bound states of KD and KD *, respectively. We confirm the presence of such states in the lattice data and determine the contribution of the KD channel in the wave function of D-s0*(2317) and that of KD* in the wave function of D-s1*(2460). Our findings indicate a large meson-meson component in the two cases.
|
|