
Aceti, F., Bayar, M., Oset, E., Martinez Torres, A., Khemchandani, K. P., Dias, J. M., et al. (2014). Prediction of an I=1 D(D)overbar* state and relationship to the claimed Z(c)(3900), Z(c)(3885). Phys. Rev. D, 90(1), 016003–13pp.
Abstract: We study here the interaction of D (D) over bar* in the isospin I = 1 channel in light of recent theoretical advances that allow us to combine elements of the local hidden gauge approach with heavy quark spin symmetry. We find that the exchange of light q (q) over bar is OkuboZweigIizuka (OZI) suppressed and thus we concentrate on the exchange of heavy vectors and of two pion exchange. The latter is found to be small compared to the exchange of heavy vectors, which then determines the strength of the interaction. A barely D (D) over bar* bound state decaying into eta(c)rho and pi J/psi is found. At the same time we reanalyze the data of the BESIII experiment on e(+)e() > pi(+/)(D (D) over bar*)(/+), from where a Z(c)(3885) state was claimed, associated to a peak in the (D (D) over bar*)(/+) invariant mass distribution close to threshold, and we find the data compatible with a resonance with mass around 3875 MeV and width around 30 MeV. We discuss the possibility that this and the Z(c)(3900) state found at BESIII, reconfirmed at 3894 MeV at Belle, or 3885 MeV at CLEO, could all be the same state and correspond to the one that we find theoretically.



Bayar, M., Martinez Torres, A., Khemchandani, K. P., Molina, R., & Oset, E. (2023). Exotic states with triple charm. Eur. Phys. J. C, 83(1), 46–9pp.
Abstract: In this work we investigate the possibility of the formation of states from the dynamics involved in the D* D* D* system by considering that two D*'s generate a JP = 1+ bound state, with isospin 0, which has been predicted in an earlier theoretical work. We solve the Faddeev equations for this system within the fixed center approximation and find the existence of J(P) = 0(), 1() and 2() states with charm 3, isospin 1/2, masses similar to 6000 MeV, which are manifestly exotic hadrons, i.e., with a multiquark inner structure.



Dai, L. R., Oset, E., Feijoo, A., Molina, R., Roca, L., Martinez Torres, A., et al. (2022). Masses and widths of the exotic molecular B(s)(()*B)((s))(*()) states. Phys. Rev. D, 105(7), 074017–11pp.
Abstract: We study the interaction of the doubly bottom systems BB, B*B, BsB, Bs*B, B*B*, B*BS, B*Bs*, BsBs, BsBs*, Bs*Bs* by means of vector meson exchange with Lagrangians from an extension of the local hidden gauge approach. The full swave scattering matrix is obtained implementing unitarity in coupled channels by means of the BetheSalpeter equation. We find poles below the channel thresholds for the attractively interacting channels B*B in I = 0, Bs*B – B*Bs in I = 1/2, B* B* in I = 0, and Bs*B* in I = 1/2, all of them with J(P) = 1(+). For these cases the widths are evaluated identifying the dominant source of imaginary part. We find binding energies of the order of 1020 MeV, and the widths vary much from one system to the other: of the order of 10100 eV for the B* B system and Bs*B – B* Bs, about 6 MeV for the B*B* system and of the order of 0.5 MeV for the Bs*B* system.



Malabarba, B. B., Khemchandani, K. P., Martinez Torres, A., & Oset, E. (2023). D1(2420) and its interactions with a kaon: Open charm states with strangeness. Phys. Rev. D, 107(3), 036016–12pp.
Abstract: In this work we present an attempt to describe the X1(2900) found by the LHCb collaboration, in the experimental data on the invariant mass spectrum of DK+, as a threemeson molecular state of the KpD over line system. We discuss that the interactions in all the subsystems are attractive in nature, with the pD over line interaction generating over line D1(2420) and the Kp resonating as K1(1270). We find that the system can form a threebody state but with a mass higher than that of X1(2900). We investigate the KpD system too, finding that the threebody dynamics generates an isoscalar state, which can be related to D*s1(2860), and an exotic isovector state. This latter state has a mass similar to that of the X0(2900) and X1(2900) states found by LHCb, but a very small width (similar to 7.4 +/ 0.9 MeV) and necessarily requires more than two quarks to describe its properties. We hope that our findings will encourage experimental investigations of the isovector KpD state. Finally, in the pursuit of finding a description for X1(2900), we study the K over line K*D* system where over line K*D* forms 0+, 1+, and 2+ states. We do not find a state that can be associated with X1(2900).



Martinez Torres, A., Bayar, M., Jido, D., & Oset, E. (2012). Strategy to find the two Lambda (1405) states from lattice QCD simulations. Phys. Rev. C, 86(5), 055201–13pp.
Abstract: Theoretical studies within the chiral unitary approach, and recent experiments, have provided evidence of the existence of two isoscalar states in the region of the Lambda(1405). In this paper we use the same chiral approach to generate energy levels in a finite box. In a second step, assuming that these energies correspond to lattice QCD results, we devise the best strategy of analysis to obtain the two states in the infinitevolume case, with sufficient precision to distinguish them. We find out that by using energy levels obtained with asymmetric boxes and/or with a moving frame, with reasonable errors in the energies, one has a successful scheme to get the two Lambda(1405) poles.



Martinez Torres, A., Dai, L. R., Koren, C., Jido, D., & Oset, E. (2012). KD, eta Ds interaction in finite volume and the Ds*0(2317) resonance. Phys. Rev. D, 85(1), 014027–11pp.
Abstract: An SU(4) extrapolation of the chiral unitary theory in coupled channels done to study the scalar mesons in the charm sector is extended to produce results in finite volume. The theory in the infinite volume produces dynamically the Ds*0(2317) resonance by means of the coupled channels KD, eta Ds. Energy levels in the finite box are evaluated and, assuming that they would correspond to lattice results, the inverse problem of determining the bound states and phase shifts in the infinite volume from the lattice data is addressed. We observe that it is possible to obtain accurate KD phase shifts and the position of the Ds*0(2317) state, but it requires the explicit consideration of the two coupled channels in the analysis if one goes close to the eta Ds threshold. We also show that the finite volume spectra look rather different in case the Ds*0(2317) is a composite state of the two mesons, or if it corresponds to a non molecular state with a small overlap with the two meson system. We then show that a careful analysis of the finite volume data can shed some light on the nature of the Ds*0(2317) resonance as a KD molecule or otherwise.



Martinez Torres, A., Garzon, E. J., Oset, E., & Dai, L. R. (2011). Limits to the fixed center approximation to Faddeev equations: The case of the phi(2170). Phys. Rev. D, 83(11), 116002–9pp.
Abstract: The fixed center approximation to the Faddeev equations has been used lately with success in the study of bound systems of three hadrons. It is also important to set the limits of the approach in those problems to prevent proliferation of inaccurate predictions. In this paper, we study the case of the phi(2170), which has been described by means of Faddeev equations as a resonant state of phi and K (K) over bar, and show the problems derived from the use of the fixed center approximation in its study. At the same time, we also expose the limitations of an alternative approach recently proposed.



Martinez Torres, A., Khemchandani, K. P., Jido, D., KanadaEn'yo, Y., & Oset, E. (2013). Threebody hadron systems with strangeness. Nucl. Phys. A, 914, 280–288.
Abstract: Recently, many efforts are being put in studying threehadron systems made of mesons and baryons and interesting results are being found. In this talk, we summarize the main features of the formalism used to study such three hadron systems with strangeness S = 1, 0 within a framework built on the basis of unitary chiral theories and solution of the Faddeev equations. In particular, we present the results obtained for the pi(K) over barN, K (K) over barN and KK (K) over bar systems and their respective coupled channels. In the first case, we find four Sigma's and two A's with spinparity J(P) = 1/2(+), in the 15001800 MeV region, as two mesonone baryon swave resonances. In the second case, a 1/2(+) N* around 1900 MeV is found. For the last one a kaon close to 1420 MeV is formed, which can be identified with K(1460).



Martinez Torres, A., Khemchandani, K. P., Navarra, F. S., Nielsen, M., & Oset, E. (2014). Reanalysis of the e(+)e() > (D*(D*)overbar)(+/)pi(/+) reaction and the claim for the Z(c)(4025) resonance. Phys. Rev. D, 89(1), 014025–9pp.
Abstract: In this paper we study the reaction e(+)e() > (D*(D*) over bar (+/)pi(/+) in which the BESIII collaboration has claimed the existence of a 1(+) resonance, named Z(c)(4025), in the (D*(D*) over bar invariant mass spectrum with a mass around 4026 MeV and width close to 26 MeV. We determine the (D*(D*) over bar invariant mass distribution and find that although the explanation considered by the BESIII collaboration is plausible, there are others which are equally possible, like a 2(+) resonance or a bound state. Even more, we find that the data can be explained without the existence of a resonance/bound state. In view of the different possible interpretations found for the BESIII data, we try to devise a strategy which could help in identifying the origin of the signal reported by the BESIII collaboration. For this, we study the dependence of the (D*(D*) over bar spectrum considering the different options as a function of the total centerofmass energy. We arrive at the conclusion that increasing the centerofmass energy from 4.26 GeV to 4.6 GeV can be useful to distinguish between a resonance, a bound state or just a pure background as being responsible for the signal found. This information should be useful for future experiments.



Martinez Torres, A., Khemchandani, K. P., Navarra, F. S., Nielsen, M., & Oset, E. (2013). The role of f(0)(1710) in the phi omega threshold peak of J/Psi > gamma phi omega. Phys. Lett. B, 719(45), 388–393.
Abstract: We study the process J/Psi > gamma phi omega, measured by the BES experiment, where a neat peak close to the phi omega threshold is observed and is associated to a scalar meson resonance around 1800 MeV. We make the observation that a scalar resonance coupling to phi omega unavoidably couples strongly to K (K) over bar, but no trace of a peak is seen in the K (K) over bar spectrum of the J/Psi > gamma K (K) over bar at this energy. This serves us to rule out the interpretation of the observed peak as a signal of a new resonance. After this is done, a thorough study is performed on the production of a pair of vector mesons and how its interaction leads necessarily to a peak in the J/Psi > gamma phi omega reaction close to the phi omega threshold, due to the dynamical generation of the f(0)(1710) resonance by the vectorvector interaction. We then show that both the shape obtained for the phi omega mass distribution, as well as the strength are naturally reproduced by this mechanism. The work also explains why the phi omega peak is observed in the BES experiment and not in other reactions, like B+/ > K+/phi omega of Belle.

