Andrade, I., Bazeia, D., Marques, M. A., Menezes, R., & Olmo, G. J. (2025). Analytical solutions for Maxwell-scalar system on radially symmetric spacetimes. Eur. Phys. J. C, 85(1), 27–15pp.
Abstract: We investigate Maxwell-scalar models on radially symmetric spacetimes in which the gauge and scalar fields are coupled via the electric permittivity. We find the conditions that allow for the presence of minimum energy configurations. In this formalism, the charge density must be written exclusively in terms of the components of the metric tensor and the scalar field is governed by first-order equations. We also find a manner to map the aforementioned equation into the corresponding one associated to kinks in (1, 1) spacetime dimensions, so we get analytical solutions for three specific spacetimes. We then calculate the energy density and show that the energy is finite. The stability of the solutions against contractions and dilations, following Derrick's argument, and around small fluctuations in the fields is also investigated. In this direction, we show that the solutions obeying the first-order framework are stable.
|
Bazeia, D., Marques, M. A., & Olmo, G. J. (2018). Small and hollow magnetic monopoles. Phys. Rev. D, 98(2), 025017–8pp.
Abstract: We deal with the presence of magnetic monopoles in a non-Abelian model that generalizes the standard 't Hooft-Polyakov model in three spatial dimensions. We investigate the energy density of the static and spherically symmetric solutions to find first order differential equations that solve the equations of motion. The system is further studied and two distinct classes of solutions are obtained, one that can also be described by analytical solutions and is called a small monopole, since it is significantly smaller than the standard 't Hooft-Polyakov monopole. The other type of structure is the hollow monopole, since the energy density is endowed with a hole at its core. The hollow monopole can be smaller or larger than the standard monopole, depending on the value of the parameter that controls the magnetic permeability of the model.
|