|
De Romeri, V., Fernandez-Martinez, E., Gehrlein, J., Machado, P. A. N., & Niro, V. (2017). Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario. J. High Energy Phys., 10(10), 169–21pp.
Abstract: The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate B-L symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged U(1) B-L symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the U(1) B-L. We investigate the phenomenology associated to these new states and find that one of them is a viable dark matter candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the Z' boson associated to the gauged U(1) B-L symmetry. Given the large charges required for anomaly cancellation in the dark sector, the B-L Z' interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on Z'-mediated dark matter relic abundance. The collider phenomenology of this elusive Z' is also discussed.
|
|
|
De Romeri, V., Kelly, K. J., & Machado, P. A. N. (2019). DUNE-PRISM sensitivity to light dark matter. Phys. Rev. D, 100(9), 095010–13pp.
Abstract: We explore the sensitivity of the Deep Underground Neutrino Experiment (DUNE) near detector and the proposed DUNE-PRISM movable near detector to sub-GeV dark matter, specifically scalar dark matter coupled to the standard model via a sub-GeV dark photon. We consider dark matter produced in the DUNE target that travels to the detector and scatters off electrons. By combining searches for dark matter at many off-axis positions with DUNE-PRISM, sensitivity to this scenario can be much stronger than when performing a measurement at one on-axis position.
|
|
|
Dev, A., Machado, P. A. N., & Martinez-Mirave, P. (2021). Signatures of ultralight dark matter in neutrino oscillation experiments. J. High Energy Phys., 01(1), 094–23pp.
Abstract: We study how neutrino oscillations could probe the existence of ultralight bosonic dark matter. Three distinct signatures on neutrino oscillations are identified, depending on the mass of the dark matter and the specific experimental setup. These are time modulation signals, oscillation probability distortions due to fast modulations, and fast varying matter effects. We provide all the necessary information to perform a bottom-up, model-independent experimental analysis to probe such scenarios. Using the future DUNE experiment as an example, we estimate its sensitivity to ultralight scalar dark matter. Our results could be easily used by any other oscillation experiment.
|
|