Samart, D., Liang, W. H., & Oset, E. (2017). Triangle mechanisms in the build up and decay of the N*(1875). Phys. Rev. C, 96(3), 035202–14pp.
Abstract: We studied the N*(1875)(3/ 2-) resonance with a multichannel unitary scheme, considering the Delta pi and Sigma * K, with their interaction extracted from chiral Lagrangians, and then added two more channels, the N*(1535) p and N sigma, which proceed via triangle diagrams involving the Sigma * K and Delta pi respectively in the intermediate states. The triangle diagram in the N*(1535) p case develops a singularity at the same energy as the resonance mass. We determined the couplings of the resonance to the different channels and the partial decay widths. We found a very large decay width to Sigma * K, and also observed that, due to interference with other terms, the N sigma channel has an important role in the pi pi mass distributions at low invariant masses, leading to an apparently large N sigma decay width. We discuss justifying the convenience of an experimental reanalysis of this resonance, in light of the findings of the paper, using multichannel unitary schemes.
|
Song, J., Liang, W. H., & Oset, E. (2025). Determination of the K+K0 scattering length and effective range from the D+→K0π+η reaction. Eur. Phys. J. C, 85(5), 513–9pp.
Abstract: We study the scattering parameters of the K+K0 system through the analysis of the D+-> K0 pi+eta reaction, aiming at determining the scattering length a and effective range r0 of the K+K0 interaction. These parameters are extracted by analyzing and fitting the mass distributions of the pairs in the final K0 pi+eta state. To ensure the reliability of the results, we apply resampling techniques to evaluate statistical uncertainties and improve the precision of the scattering parameters. The obtained results are compared with previous theoretical predictions and experimental data, providing new insights into the K+K0 interaction at low energies.
|
Song, J., Liang, W. H., Xiao, C. W., Dias, J. M., & Oset, E. (2024). Testing the molecular nature of the Ω (2012) with the ψ (3770) → (Ω)over-bar(K)over-barΞ and ψ (3770) → (Ω)over-bar(K)over-barΞ* (1530) ((Ω)over-bar(K)over-barπΞ) reactions. Eur. Phys. J. C, 84(12), 1311–7pp.
Abstract: We report on the reactions psi(3770) -> (Omega) over bar+(K) over bar Xi and psi(3770) -> (Omega) over bar (+)(K) over bar Xi*(1530) (Xi* (1530) -> pi Xi), and calculate the mass distributions d Gamma/dM(inv)((K) over bar Xi) and d Gamma/dM(inv)(K Xi*), respectively. We obtain clear peaks corresponding to the Omega(2012). From the decay of psi(3770) -> (Omega) over bar (+)(K) over bar Xi*, we also get a second, broader, peak around 2035MeV, which comes from the Omega(2012) decay to (K) over bar Xi*. This second peak is closely tied to the molecular picture of the Omega(2012) with the (K) over bar Xi* (1530) and eta Omega components. Its observation would provide a boost to the molecular picture of the Omega (2012).
|
Uchino, T., Liang, W. H., & Oset, E. (2016). Baryon states with hidden charm in the extended local hidden gauge approach. Eur. Phys. J. A, 52(3), 43–16pp.
Abstract: The s-wave interaction of (D) over bar Lambda(c), (D) over bar Sigma(c),(D) over bar*Lambda(c), (D) over bar*Sigma(c) and (D) over bar Sigma(c)*, (D) over bar*Sigma(c)*, is studied within a unitary coupled channels scheme with the extended local hidden gauge approach. In addition to the Weinberg-Tomozawa term, several additional diagrams via the pion exchange are also taken into account as box potentials. Furthermore, in order to implement the full coupled channels calculation, some of the box potentials which mix the vector-baryon and pseudoscalar-baryon sectors are extended to construct the effective transition potentials. As a result, we have observed six possible states in several angular momenta. Four of them correspond to two pairs of admixture states, two of (D) over bar Sigma(c) – (D) over bar*Sigma(c) with J – 1/2, and two of (D) over bar Sigma(c)* – (D) over bar*Sigma(c)* with J = 3/2. Moreover, we find a (D) over bar*Sigma(c) resonance which couples to the (D) over bar Lambda(c) channel and one spin degenerated bound state of (D) over bar*Sigma(c)* with J = 1/2, 5/2.
|
Wang, E., Li, H. S., Liang, W. H., & Oset, E. (2021). Analysis of the gamma gamma -> D(D)over-bar reaction and the D(D)over-bar bound state. Phys. Rev. D, 103(5), 054008–10pp.
Abstract: In this work, we investigate the reaction of gamma gamma -> D (D) over bar, taking into account the S-wave D (D) over bar final state interaction. By fitting to the D (D) over bar, invariant mass distributions measured by the Belle and BABAR Collaborations, we obtain a good reproduction of the data by means of a D (D) over bar, amplitude that produces a bound D (D) over bar, statewith isospin I = 0 close to threshold. The error bands of the fits indicate, however, that more precise data on this reaction are needed to be more assertive about the position and width of such a state.
|
Wang, E., Liang, W. H., & Oset, E. (2021). Analysis of the e(+)e(-) -> J/psi D(D)over-bar reaction close to the threshold concerning claims of a chi(c0)(2P) state. Eur. Phys. J. A, 57(1), 38–9pp.
Abstract: We analyze the D (D) over bar mass distribution from a recent Belle experiment on the e(+)e(-) -> J/.D (D) over bar reaction, and show that the mass distribution divided by phase sp(c)e does not have a clear peak above the D (D) over bar threshold that justifies the experimental claim of chi(c0)(2P) state from those data. Then we use a unitary formalismwith coupled channels D+ D-, D-0 (D) over bar (0), D-s(D) over bar (s), and eta eta, with some of the interactions taken from a theoretical model, and use the data to fix other parameters. We then show that, given the poor quality of the data, we can get different fits leading to very different D (D) over bar amplitudes, some of them supporting a D (D) over bar bound state and others not. The main conclusion is that the claim for the chi(c0)(2P) state, already included in the PDG, is premature, but refined data can provide very valuable information on the D (D) over bar scattering amplitude. As side effects, we warn about the use of a Breit-Wigner amplitude parameterization close to threshold, and show that the D-s(D) over bar (s) channel plays an important role in this reaction.
|
Wang, E., Xie, J. J., Liang, W. H., Guo, F. K., & Oset, E. (2017). Role of a triangle singularity in the gamma p -> K+Lambda (1405) reaction. Phys. Rev. C, 95(1), 015205–9pp.
Abstract: We show the effects of a triangle singularity mechanism for the gamma p -> K+Lambda(1405) reaction. The mechanism has a N-* resonance around 2030 MeV, which decays into K*Sigma. The K-* decays to K+ pi, and the pi Sigma merge to form the Lambda (1405). This mechanism produces a peak around root s = 2110 MeV, and has its largest contribution around cos theta= 0. The addition of this mechanism to other conventional ones leads to a good reproduction of d sigma/dcos theta and the integrated cross section around this energy, providing a solution to a problem encountered in previous theoretical models.
|
Wang, G. Y., Roca, L., Wang, E., Liang, W. H., & Oset, E. (2020). Signatures of the two K1(1270) poles in D – plus ve plus V P decay. Eur. Phys. J. C, 80(5), 388–7pp.
Abstract: We analyze theoretically the D+ ye+ pK and D+ pe+ K*7 decays to see the feasibility to check the double pole nature of the axial -vector resonance Kt(1270) predicted by the unitary extensions of chiral perturbation theory (UChPT). Indeed, within UChPT the K1(1270) is dynamically generated from the interaction of a vector and a pseudoscalar meson, and two poles are obtained for the quantum numbers of this resonance. The lower mass pole couples dominantly to 10 and the higher mass pole to pK, therefore we can expect that different reactions weighing differently these channels in the production mechanisms enhance one or the other pole. We show that the different final V P channels in D pe+ V P weigh differently both poles, and this is reflected in the shape of the final vector-pseudoscalar invariant mass distributions. Therefore, we conclude that these decays are suitable to distinguish experimentally the predicted double pole of the Kt(1270) resonance.
|
Xiao, C. W., Dias, J. M., Dai, L. R., Liang, W. H., & Oset, E. (2024). Triangle singularity in the J/ψ → ϕ π+ a−0(π−η) ,ϕ π− a+0(π+η) decays. Phys. Rev. D, 109(7), 074033–11pp.
Abstract: We study the J= psi -> phi pi + a 0 ( 980 ) – ( a – 0 -> pi – eta ) decay, evaluating the double mass distribution in terms of the pi – eta and pi + a – 0 invariant masses. We show that the pi – eta mass distribution exhibits the typical cusp structure of the a 0 ( 980 ) seen in recent high statistics experiments, and the pi + a – 0 spectrum shows clearly a peak around M inv ( pi + a – 0 ) = 1420 MeV, corresponding to a triangle singularity. When integrating over the two invariant masses we find a branching ratio for this decay of the order of 10 – 5 , which is easily accessible in present laboratories. We also call attention to the fact that the signal obtained is compatible with a bump experimentally observed in the eta pi + pi – mass distribution in the J= psi -> phi eta pi + pi – decay and encourage further analysis to extract from there the phi pi + a – 0 and phi pi – a + 0 decay modes.
|
Xie, J. J., Liang, W. H., & Oset, E. (2019). eta-He-4 interaction from the dd->eta He-4 reaction near threshold. Eur. Phys. J. A, 55(1), 6–8pp.
Abstract: .We analyze the data on the total cross sections for the dd4 He reaction close to threshold and look for possible 4 He bound states. We develop a framework in which the 4 He optical potential is the key ingredient, rather than parameterizing the scattering matrix, as is usually done. The strength of this potential, together with some production parameters, are fitted to the available experimental data. The relationship of the scattering matrix to the optical potential is established using the Bethe-Salpeter equation and the 4 He loop function incorporates the range of the interaction given by the experimental He-4 density. However, when we look for poles of the scattering matrix, we get poles in the bound region, poles in the positive energy region or no poles at all. If we further restrict the results with constraints from a theoretical model with all its uncertainties the bound states are not allowed. However, we find a bump structure in |T|2 of the 4 He 4 He scattering amplitude below threshold for the remaining solutions.
|