|
Barenboim, G., Bosch, C., Lee, J. S., Lopez-Ibañez, M. L., & Vives, O. (2015). Flavor-changing Higgs boson decays into bottom and strange quarks in supersymmetric models. Phys. Rev. D, 92(9), 095017–15pp.
Abstract: In this work, we explore the flavor-changing decays H-i -> bs in a general supersymmetric scenario. In these models the flavor-changing decays arise at loop level, but-because they originate from a dimension-four operator-they do not decouple and may provide a first sign of new physics for heavy masses beyond the reach of colliders. In the framework of the minimal supersymmetric extension of the Standard Model, we find that the largest branching ratio of the lightest Higgs (H-1) is O(10(-6)) after imposing present experimental constraints, while heavy Higgs states may still present branching ratios O(10(-3)). In a more general supersymmetric scenario, where additional Higgs states may modify the Higgs mixings, the branching ratio BR(H-1 -> bs) can reach values O(10(-4)), while heavy Higgses still remain at O(10(-3)). Although these values are clearly out of reach for the LHC, a full study in a linear collider environment could be worth pursuing.
|
|
|
Ellis, J., Hodgkinson, R. N., Lee, J. S., & Pilaftsis, A. (2010). Flavour geometry and effective Yukawa couplings in the MSSM. J. High Energy Phys., 02(2), 016–35pp.
Abstract: We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive the necessary and sufficient conditions for a linearly-independent basis of matrices related to the completeness of the internal [SU(3) circle times U(1)](5) flavour space. In a second step, we calculate the effective Yukawa couplings that are enhanced at large values of tan beta for general soft supersymmetry-breaking mass parameters. We highlight the contributions due to non-universal terms in the flavour decompositions of the sfermion mass matrices. We present numerical examples illustrating how such terms are induced by renormalization-group evolution starting from universal input boundary conditions, and demonstrate their importance for the flavour-violating effective Yukawa couplings of quarks.
|
|
|
Lee, J. S., & Pilaftsis, A. (2012). Radiative corrections to scalar masses and mixing in a scale invariant two Higgs doublet model. Phys. Rev. D, 86(3), 035004–14pp.
Abstract: We study the Higgs boson mass spectrum of a classical scale invariant realization of the two Higgs doublet model (SI-2HDM). The classical scale symmetry of the theory is explicitly broken by quantum loop effects due to gauge interactions, Higgs self-couplings and top quark Yukawa couplings. We determine the allowed parameter space compatible with perturbative unitarity and electroweak precision data. Taking into account the LEP and the recent LHC exclusion limits on a standard-model-like Higgs boson HSM, we obtain rather strict constraints on the mass spectrum of the heavy Higgs sector of the SI-2HDM. In particular, if MHSM 125 GeV, the SI-2HDM strongly favors scenarios in which at least one of the nonstandard neutral Higgs bosons has a mass close to 400 GeV and is generically degenerate with the charged Higgs boson, whilst the third neutral Higgs scalar is lighter than 500 GeV.
|
|