|
Alvarez-Ruso, L., Ledwig, T., Martin Camalich, J., & Vicente Vacas, M. J. (2013). Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data. Phys. Rev. D, 88(5), 054507–20pp.
Abstract: The pion mass dependence of the nucleon mass within the covariant SU(2) baryon chiral perturbation theory both without and with explicit Delta(1232) degrees of freedom up to order p(4) is investigated. By fitting to a comprehensive set of lattice QCD data in 2 and 2 + 1 flavors from several collaborations, for pion masses M-pi < 420 MeV, we obtain low energy constants of natural size that are compatible with pion-nucleon scattering data. Our results are consistent with the rather linear pion mass dependence showed by lattice QCD. In the 2 flavor case we have also performed simultaneous fits to nucleon mass and sigma(pi N) data. As a result of our analysis, which encompasses the study of finite volume corrections and discretization effects, we report a value of sigma(pi N) = 41(5)(4) MeV in the 2 flavor case and sigma(pi N) = 52(3)(8) MeV for 2 + 1 flavors, where the inclusion of the Delta(1232) resonance changes the results by around 9 MeV. In the 2 flavor case we are able to set independently the scale for lattice QCD data, given by a Sommer scale of r(0) = 0.493(23) fm.
|
|
|
Hiller Blin, A. N., Gutsche, T., Ledwig, T., & Lyubovitskij, V. E. (2015). Hyperon forward spin polarizability gamma(0) in baryon chiral perturbation theory. Phys. Rev. D, 92(9), 096004–9pp.
Abstract: We present the calculation of the hyperon forward spin polarizability gamma(0) using manifestly Lorentz-covariant baryon chiral perturbation theory including the intermediate contribution of the spin-3/2 states. As at the considered order the extraction of. 0 is a pure prediction of chiral perturbation theory, the obtained values are a good test for this theory. After including explicitly the decuplet states, our SU(2) results have a very good agreement with the experimental data and we extend our framework to SU(3) to give predictions for the hyperons'. 0 values. Prominent are the Sigma(-) and Xi(-) baryons as their photon transition to the decuplet is forbidden in SU(3) symmetry and therefore they are not sensitive to the explicit inclusion of the decuplet in the theory.
|
|
|
Hiller Blin, A. N., Ledwig, T., & Vicente Vacas, M. J. (2016). Delta(1232) resonance in the (gamma)over-right-arrowp -> p pi(0) reaction at threshold. Phys. Rev. D, 93(9), 094018–19pp.
Abstract: We calculate the neutral pion photoproduction on the proton near threshold in covariant baryon chiral perturbation theory, including the Delta(1232) resonance as an explicit degree of freedom, up to chiral order p(7/2) in the delta counting. We compare our results with recent low-energy data from the Mainz Microtron for angular distributions and photon asymmetries. The convergence of the chiral series of the covariant approach is found to improve substantially with the inclusion of the Delta(1232) resonance.
|
|
|
Hiller Blin, A. N., Ledwig, T., & Vicente Vacas, M. J. (2015). Chiral dynamics in the (gamma)over-right-arrowp -> p pi(0) reaction. Phys. Lett. B, 747, 217–222.
Abstract: We investigate the neutral pion photoproduction on the proton near threshold in covariant chiral perturbation theory with the explicit inclusion of A degrees of freedom. This channel is specially sensitive to chiral dynamics and the advent of very precise data from the Mainz microtron has shown the limits of the convergence of the chiral series for both the heavy baryon and the covariant approaches. We show that the inclusion of the Delta resonance substantially improves the convergence leading to a good agreement with data for a wider range of energies.
|
|
|
Ledwig, T., Martin Camalich, J., Geng, L. S., & Vicente Vacas, M. J. (2014). Octet-baryon axial-vector charges and SU(3)-breaking effects in the semileptonic hyperon decays. Phys. Rev. D, 90(5), 054502–16pp.
Abstract: The octet-baryon axial-vector charges and the g(1)/f(1) ratios measured in the semileptonic hyperon decays are studied up to O(p(3)) using the covariant baryon chiral perturbation theory with explicit decuplet contributions. We clarify the role of different low-energy constants and find a good convergence for the chiral expansion of the axial-vector charges of the baryon octet, g(1)(0), with O(p(3)) corrections typically around 20% of the leading ones. This is a consequence of strong cancellations between different next-to-leading- order terms. We show that considering only nonanalytic terms is not enough and that analytic terms appearing at the same chiral order play an important role in this description. The same effects still hold for the chiral extrapolation of the axial-vector charges and result in a rather mild quark-mass dependence. As a result, we report a determination of the leading-order chiral couplings, D = 0.623(61)(17) and F = 0.441(47)(2), as obtained from a completely consistent chiral analysis up to O(p(3)). Furthermore, we note that the appearance of an unknown low-energy constant precludes the extraction of the proton octet charge from semileptonic decay data alone, which is relevant for an analysis of the composition of the proton spin.
|
|
|
Ledwig, T., Martin-Camalich, J., Pascalutsa, V., & Vanderhaeghen, M. (2012). Nucleon and Delta(1232) form factors at low momentum transfer and small pion masses. Phys. Rev. D, 85(3), 034013–25pp.
Abstract: An expansion of the electromagnetic form factors of the nucleon and Delta(1232) in small momentum transfer and pion mass is performed in a manifestly covariant EFT framework consistent with chiral symmetry and analyticity. We present the expressions for the nucleon and Delta(1232) electromagnetic form factors, charge radii, and electromagnetic moments in the framework of SU(2) baryon chiral perturbation theory, with nucleon and Delta-isobar degrees of freedom, to next-to-leading order. Motivated by the results for the proton electric radius obtained from the muonic-hydrogen atom and electron-scattering process, we extract values for the second derivative of the electric form factor which is a genuine prediction of the p(3) B chi PT. The chiral behavior of radii and moments is studied and compared to that obtained in the heavy-baryon framework and lattice QCD. The chiral behavior of Delta(1232)-isobar properties exhibits cusps and singularities at the threshold of Delta -> pi N decay, and their physical significance is discussed.
|
|
|
Ledwig, T., Nieves, J., Pich, A., Ruiz Arriola, E., & Ruiz de Elvira, J. (2014). Large-N-c naturalness in coupled-channel meson-meson scattering. Phys. Rev. D, 90(11), 114020–17pp.
Abstract: The analysis of hadronic interactions with effective field theory techniques is complicated by the appearance of a large number of low-energy constants, which are usually fitted to data. On the other hand, the large-N-c limit helps to impose natural short-distance constraints on these low-energy constants, providing a parameter reduction. A Bayesian interpretation of the expected 1/N-c accuracy allows for an easy and efficient implementation of these constraints, using an augmented chi(2). We apply this approach to the analysis of meson-meson scattering, in conjunction with chiral perturbation theory to one loop and coupled-channel unitarity, and show that it helps to largely reduce the many existing ambiguities and simultaneously provide an acceptable description of the available phase shifts.
|
|
|
Ren, X. L., Alvarez-Ruso, L., Geng, L. S., Ledwig, T., Meng, J., & Vicente Vacas, M. J. (2017). Consistency between SU(3) and SU(2) covariant baryon chiral perturbation theory for the nucleon mass. Phys. Lett. B, 766, 325–333.
Abstract: Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the 19low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order[1] is supported by comparing the effective parameters (the combinations of the 19couplings) with the corresponding low-energy constants in the SU(2) sector[2]. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.[2] that the SU(2) baryon chiral perturbation theory can be applied to study n(f) = 2 + 1lattice QCD simulations as long as the strange quark mass is close to its physical value.
|
|