Armillis, R., Lazarides, G., & Pallis, C. (2014). Inflation, leptogenesis, and Yukawa quasiunification within a supersymmetric left-right model. Phys. Rev. D, 89(6), 065032–22pp.
Abstract: A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification predicted by the minimal model. After including supergravity corrections, we find that this extended model naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild tuning of the initial conditions. With a convenient choice of signs of the terms in the Kahler potential, we can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data on the inflationary observables are readily reproduced. Inflation is followed by nonthermal leptogenesis via the decay of the right-handed neutrinos emerging from the decay of the inflaton, and any possible washout of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino oscillation parameters.
|
Karagiannakis, N., Lazarides, G., & Pallis, C. (2015). Probing the hyperbolic branch/focus point region of the constrained minimal supersymmetric standard model with generalized Yukawa quasiunification. Phys. Rev. D, 92(8), 085018–15pp.
Abstract: We analyze the parametric space of the constrained minimal supersymmetric standard model with μ> 0 supplemented by a generalized asymptotic Yukawa coupling quasiunification condition which yields acceptable masses for the fermions of the third family. We impose constraints from the cold dark matter abundance in the Universe and its direct-detection experiments, the B physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson. Fixing the mass of the latter to its central value from the LHC and taking 40 less than or similar to tan beta less than or similar to 50, we find a relatively wide allowed parameter space with -11 less than or similar to A(0)/M-1/2 less than or similar to 15 and a mass of the lightest sparticle in the range (0.09-1.1) TeV. This sparticle is possibly detectable by the present cold dark matter direct search experiments. The required fine-tuning for the electroweak symmetry breaking is much milder than the one needed in the neutralino-stau coannihilation region of the same model.
|
Lazarides, G., Reig, M., Shafi, Q., Srivastava, R., & Valle, J. W. F. (2019). Spontaneous Breaking of Lepton Number and the Cosmological Domain Wall Problem. Phys. Rev. Lett., 122(15), 151301–5pp.
Abstract: We show that if global lepton number symmetry is spontaneously broken in a postinflation epoch, then it can lead to the formation of cosmological domain walls. This happens in the well-known “Majoron paradigm” for neutrino mass generation. We propose some realistic examples that allow spontaneous lepton number breaking to be safe from such domain walls.
|