|
Gonzalez, M., Hirsch, M., & Kovalenko, S. G. (2018). Neutrinoless double beta decay and QCD running at low energy scales. Phys. Rev. D, 97(11), 115005–6pp.
Abstract: There is a common belief that the main uncertainties in the theoretical analysis of neutrinoless double beta (0 nu beta beta) decay originate from the nuclear matrix elements. Here, we uncover another previously overlooked source of potentially large uncertainties stemming from nonperturbative QCD effects. Recently perturbative QCD corrections have been calculated for all dimension 6 and 9 effective operators describing 0 nu beta beta-decay and their importance for a reliable treatment of 0 nu beta beta-decay has been demonstrated. However, these perturbative results are valid at energy scales above similar to 1 GeV, while the typical 0 nu beta beta scale is about similar to 100 MeV. In view of this fact we examine the possibility of extrapolating the perturbative results towards sub-GeV nonperturbative scales on the basis of the QCD coupling constant “freezing” behavior using background perturbation theory. Our analysis suggests that such an infrared extrapolation does modify the perturbative results for both short-range and long-range mechanisms of 0 nu beta beta-decay in general only moderately. We also discuss that the tensor circle times tensor effective operator cannot appear alone in the low energy limit of any renormalizable high-scale model and then demonstrate that all five linearly independent combinations of the scalar and tensor operators, which can appear in renormalizable models, are infrared stable.
|
|
|
Gonzalez, M., Kovalenko, S. G., & Hirsch, M. (2016). QCD running in neutrinoless double beta decay: Short-range mechanisms. Phys. Rev. D, 93(1), 013017–11pp.
Abstract: The decay rate of neutrinoless double beta (0 nu beta beta) decay contains terms from heavy particle exchange, which lead to dimension-9 (d = 9) six fermion operators at low energies. Limits on the coefficients of these operators have been derived previously neglecting the running of the operators between the high scale, where they are generated, and the energy scale of 0 nu beta beta decay, where they are measured. Here we calculate the leading-order QCD corrections to all possible d = 9 operators contributing to the 0 nu beta beta amplitude and use renormalization group running to calculate 1-loop improved limits. Numerically, QCD running dramatically changes some limits by factors of the order of or larger than typical uncertainties in nuclear matrix element calculations. For some specific cases, operator mixing in the running changes limits even by up to 3 orders of magnitude. Our results can be straightforwardly combined with new experimental limits or improved nuclear matrix element calculations to rederive updated limits on all short-range contributions to 0 nu beta beta decay.
|
|
|
Gutsche, T., Hiller Blin, A. N., Kovalenko, S., Kuleshov, S., Lyubovitskij, V. E., & Vicente Vacas, M. J. (2017). CP-violating decays of the pseudoscalars eta and eta' and their connection to the electric dipole moment of the neutron. Phys. Rev. D, 95(3), 036022–9pp.
Abstract: Using the present upper bound on the neutron electric dipole moment, we give an estimate for the upper limit of the CP-violating couplings of the eta(eta') to the nucleon. Using this result, we then derive constraints on the CP-violating eta(eta')pi pi couplings, which define the two-pion CP-violating decays of the eta and eta' mesons. Our results are relevant for the running and planned measurements of rare decays of the. eta and eta' mesons by the GlueX Collaboration at JLab and the LHCb Collaboration at CERN.
|
|
|
Helo, J. C., Kovalenko, S. G., & Hirsch, M. (2014). Heavy neutrino searches at the LHC with displaced vertices. Phys. Rev. D, 89(7), 073005–7pp.
Abstract: Sterile neutrinos with masses in the range of 1-100 GeV have been searched for in a variety of experiments. Here, we discuss the prospects of searching for sterile neutrinos at the LHC using displaced vertices. Two different cases are discussed: (i) the standard model extended with sterile neutrinos, and (ii) right-handed neutrinos in a left-right symmetric extension of the standard model. A dedicated displaced vertex search will allow us to probe parts of the parameter space not accessible to other searches, but both cases will require a large luminosity.
|
|
|
Helo, J. C., Kovalenko, S. G., Hirsch, M., & Pas, H. (2013). Neutrinoless double beta decay and lepton number violation at the LHC. Phys. Rev. D, 88(1), 011901–5pp.
Abstract: We compare the discovery potential of the LHC for lepton number violating (LNV) signals with the sensitivity of current and future double beta decay experiments, assuming 0 nu beta beta decay is dominated by heavy particle exchange. We consider charged scalar, leptoquark and diquark mechanisms of 0 nu beta beta decay, covering the 0 nu beta beta decay operators with both, the smallest and largest, possible rates. We demonstrate, if 0 nu beta beta decay were found with a half-life below 10(26)-10(27) years a positive signal should show up at the LHC, except for some particular cases of the leptoquark mechanism, and vice versa, if the LHC does not find any hints for LNV, a “short-range” explanation for a finite 0 nu beta beta decay half-life will be ruled out in most cases. We argue, if a positive LNV signal were found at the LHC, it is possible to identify the dominant contribution to 0 nu beta beta. Two different kinds of observables which could provide such “model discriminating” power are discussed: different invariant mass peaks and the charge asymmetry.
|
|
|
Helo, J. C., Kovalenko, S. G., Hirsch, M., & Pas, H. (2013). Short-range mechanisms of neutrinoless double beta decay at the LHC. Phys. Rev. D, 88(7), 073011–19pp.
Abstract: Lepton number violation (LNV) mediated by short- range operators can manifest itself in both neutrinoless double beta decay (0 nu beta beta) and in processes with same- sign dilepton final states at the LHC. We derive limits from existing LHC data at root s = 8 TeV and compare the discovery potential of the forthcoming root s = 14 TeV phase of the LHC with the sensitivity of current and future 0 nu beta beta decay experiments, assuming the short-range part of the 0 nu beta beta decay amplitude dominates. We focus on the first of two possible topologies triggered by one fermion and two bosons in the intermediate state. In all cases, except for the pure leptoquark mechanism, the LHC will be more sensitive than 0 nu beta beta decay in the future. In addition, we propose to search for a charge asymmetry in the final state leptons and to use different invariant mass peaks as a possible tool to discriminate the various possible mechanisms for LNV signals at the LHC.
|
|