|
Aceti, F., Bayar, M., Oset, E., Martinez Torres, A., Khemchandani, K. P., Dias, J. M., et al. (2014). Prediction of an I=1 D(D)over-bar* state and relationship to the claimed Z(c)(3900), Z(c)(3885). Phys. Rev. D, 90(1), 016003–13pp.
Abstract: We study here the interaction of D (D) over bar* in the isospin I = 1 channel in light of recent theoretical advances that allow us to combine elements of the local hidden gauge approach with heavy quark spin symmetry. We find that the exchange of light q (q) over bar is Okubo-Zweig-Iizuka (OZI) suppressed and thus we concentrate on the exchange of heavy vectors and of two pion exchange. The latter is found to be small compared to the exchange of heavy vectors, which then determines the strength of the interaction. A barely D (D) over bar* bound state decaying into eta(c)rho and pi J/psi is found. At the same time we reanalyze the data of the BESIII experiment on e(+)e(-) -> pi(+/-)(D (D) over bar*)(-/+), from where a Z(c)(3885) state was claimed, associated to a peak in the (D (D) over bar*)(-/+) invariant mass distribution close to threshold, and we find the data compatible with a resonance with mass around 3875 MeV and width around 30 MeV. We discuss the possibility that this and the Z(c)(3900) state found at BESIII, reconfirmed at 3894 MeV at Belle, or 3885 MeV at CLEO, could all be the same state and correspond to the one that we find theoretically.
|
|
|
Bayar, M., Martinez Torres, A., Khemchandani, K. P., Molina, R., & Oset, E. (2023). Exotic states with triple charm. Eur. Phys. J. C, 83(1), 46–9pp.
Abstract: In this work we investigate the possibility of the formation of states from the dynamics involved in the D* D* D* system by considering that two D*'s generate a JP = 1+ bound state, with isospin 0, which has been predicted in an earlier theoretical work. We solve the Faddeev equations for this system within the fixed center approximation and find the existence of J(P) = 0(-), 1(-) and 2(-) states with charm 3, isospin 1/2, masses similar to 6000 MeV, which are manifestly exotic hadrons, i.e., with a multiquark inner structure.
|
|
|
Dai, L. R., Oset, E., Feijoo, A., Molina, R., Roca, L., Martinez Torres, A., et al. (2022). Masses and widths of the exotic molecular B-(s)(()*B-)((s))(*()) states. Phys. Rev. D, 105(7), 074017–11pp.
Abstract: We study the interaction of the doubly bottom systems BB, B*B, BsB, B-s*B, B*B*, B*B-S, B*B-s*, BsBs, BsBs*, B-s*B-s* by means of vector meson exchange with Lagrangians from an extension of the local hidden gauge approach. The full s-wave scattering matrix is obtained implementing unitarity in coupled channels by means of the Bethe-Salpeter equation. We find poles below the channel thresholds for the attractively interacting channels B*B in I = 0, B-s*B – B*B-s in I = 1/2, B* B* in I = 0, and B-s*B* in I = 1/2, all of them with J(P) = 1(+). For these cases the widths are evaluated identifying the dominant source of imaginary part. We find binding energies of the order of 10-20 MeV, and the widths vary much from one system to the other: of the order of 10-100 eV for the B* B system and B-s*B – B* B-s, about 6 MeV for the B*B* system and of the order of 0.5 MeV for the B-s*B* system.
|
|
|
Malabarba, B. B., Khemchandani, K. P., Martinez Torres, A., & Oset, E. (2023). D1(2420) and its interactions with a kaon: Open charm states with strangeness. Phys. Rev. D, 107(3), 036016–12pp.
Abstract: In this work we present an attempt to describe the X1(2900) found by the LHCb collaboration, in the experimental data on the invariant mass spectrum of D-K+, as a three-meson molecular state of the KpD over line system. We discuss that the interactions in all the subsystems are attractive in nature, with the pD over line interaction generating over line D1(2420) and the Kp resonating as K1(1270). We find that the system can form a three-body state but with a mass higher than that of X1(2900). We investigate the KpD system too, finding that the three-body dynamics generates an isoscalar state, which can be related to D*s1(2860), and an exotic isovector state. This latter state has a mass similar to that of the X0(2900) and X1(2900) states found by LHCb, but a very small width (similar to 7.4 +/- 0.9 MeV) and necessarily requires more than two quarks to describe its properties. We hope that our findings will encourage experimental investigations of the isovector KpD state. Finally, in the pursuit of finding a description for X1(2900), we study the K over line K*D* system where over line K*D* forms 0+, 1+, and 2+ states. We do not find a state that can be associated with X1(2900).
|
|
|
Martinez Torres, A., Khemchandani, K. P., Jido, D., Kanada-En'yo, Y., & Oset, E. (2013). Three-body hadron systems with strangeness. Nucl. Phys. A, 914, 280–288.
Abstract: Recently, many efforts are being put in studying three-hadron systems made of mesons and baryons and interesting results are being found. In this talk, we summarize the main features of the formalism used to study such three hadron systems with strangeness S = -1, 0 within a framework built on the basis of unitary chiral theories and solution of the Faddeev equations. In particular, we present the results obtained for the pi(K) over barN, K (K) over barN and KK (K) over bar systems and their respective coupled channels. In the first case, we find four Sigma's and two A's with spin-parity J(P) = 1/2(+), in the 1500-1800 MeV region, as two meson-one baryon s-wave resonances. In the second case, a 1/2(+) N* around 1900 MeV is found. For the last one a kaon close to 1420 MeV is formed, which can be identified with K(1460).
|
|
|
Martinez Torres, A., Khemchandani, K. P., Navarra, F. S., Nielsen, M., & Oset, E. (2014). Reanalysis of the e(+)e(-) -> (D*(D*)over-bar)(+/-)pi(-/+) reaction and the claim for the Z(c)(4025) resonance. Phys. Rev. D, 89(1), 014025–9pp.
Abstract: In this paper we study the reaction e(+)e(-) -> (D*(D*) over bar (+/-)pi(-/+) in which the BESIII collaboration has claimed the existence of a 1(+) resonance, named Z(c)(4025), in the (D*(D*) over bar invariant mass spectrum with a mass around 4026 MeV and width close to 26 MeV. We determine the (D*(D*) over bar invariant mass distribution and find that although the explanation considered by the BESIII collaboration is plausible, there are others which are equally possible, like a 2(+) resonance or a bound state. Even more, we find that the data can be explained without the existence of a resonance/bound state. In view of the different possible interpretations found for the BESIII data, we try to devise a strategy which could help in identifying the origin of the signal reported by the BESIII collaboration. For this, we study the dependence of the (D*(D*) over bar spectrum considering the different options as a function of the total center-of-mass energy. We arrive at the conclusion that increasing the center-of-mass energy from 4.26 GeV to 4.6 GeV can be useful to distinguish between a resonance, a bound state or just a pure background as being responsible for the signal found. This information should be useful for future experiments.
|
|
|
Martinez Torres, A., Khemchandani, K. P., Navarra, F. S., Nielsen, M., & Oset, E. (2013). The role of f(0)(1710) in the phi omega threshold peak of J/Psi -> gamma phi omega. Phys. Lett. B, 719(4-5), 388–393.
Abstract: We study the process J/Psi -> gamma phi omega, measured by the BES experiment, where a neat peak close to the phi omega threshold is observed and is associated to a scalar meson resonance around 1800 MeV. We make the observation that a scalar resonance coupling to phi omega unavoidably couples strongly to K (K) over bar, but no trace of a peak is seen in the K (K) over bar spectrum of the J/Psi -> gamma K (K) over bar at this energy. This serves us to rule out the interpretation of the observed peak as a signal of a new resonance. After this is done, a thorough study is performed on the production of a pair of vector mesons and how its interaction leads necessarily to a peak in the J/Psi -> gamma phi omega reaction close to the phi omega threshold, due to the dynamical generation of the f(0)(1710) resonance by the vector-vector interaction. We then show that both the shape obtained for the phi omega mass distribution, as well as the strength are naturally reproduced by this mechanism. The work also explains why the phi omega peak is observed in the BES experiment and not in other reactions, like B-+/- -> K-+/-phi omega of Belle.
|
|
|
Martinez Torres, A., Khemchandani, K. P., Nielsen, M., Navarra, F. S., & Oset, E. (2013). Exploring the D* rho system within QCD sum rules. Phys. Rev. D, 88(7), 074033–14pp.
Abstract: We present a study of the D* rho system made by using the method of QCD sum rules to determine the mass of possible resonances generated in the same system. Using isospin and spin projectors, we investigate the different configurations and obtain evidences for three D* mesons with isospin I = 1/2, spin S = 0, 1, 2 and with masses 2500 +/- 67, 2523 +/- 60, and 2439 +/- 119 MeV, respectively. The last state can be associated with D-2*(2460) ( spin 2) listed by the Particle Data Group, while one of the first two might be related to D* (2640), with unknown spin parity. In the case of I = 3/2 we also find evidences of three states with spin 0, 1, and 2, respectively, with masses 2467 +/- 82, 2420 +/- 128, and 2550 +/- 56 MeV. The results for the sector I = 1/2 and S 0, 1, 2, are intriguingly similar to a previous study of the D* rho system based on effective field theories, supporting in this way a molecular picture for the resonances D* (2640) and D-2* (2460), while the results for I = 3/2 hint towards the existence of exotic mesons since a multiquark configuration is required to get the quantum numbers of the states found.
|
|
|
Martinez Torres, A., Khemchandani, K. P., & Oset, E. (2023). Theoretical study of the gamma d -> pi(0)eta d reaction. Phys. Rev. C, 107(2), 025202–24pp.
Abstract: We have done a theoretical study of the gamma d -> pi(0)eta d reaction starting with a realistic model for the gamma N -> pi(0)eta N reaction that reproduces cross sections and polarization observables at low energies and involves the gamma N -> Delta(1700) -> eta Delta(1232) -> eta pi N-0 process. For the coherent reaction in the deuteron we considered the impulse approximation together with the rescattering of the pions and the eta on a different nucleon than the one where they are produced. We found this second mechanism very important since it helps share between two nucleons the otherwise large momentum transfer of the reaction. Other contributions to the gamma d -> pi(0)eta d reaction, involving the gamma N -> pi(+/-)pi N-0' process, followed by the rescattering of the pi(+/-) with another nucleon to give eta and a nucleon, have also been included. We find a natural explanation, tied to the dynamics of our model, for the shift of the eta-d mass distribution to lower invariant masses, and of the pi(0)-d mass distribution to larger invariant masses, compared to a phase space calculation. We also study theoretical uncertainties related to the large momenta of the deuteron wave function involved in the process as well as to the couplings present in the model. Striking differences are found with the experimental angular distribution and further theoretical investigations might be necessary.
|
|
|
Martinez Torres, A., Khemchandani, K. P., Roca, L., & Oset, E. (2020). Few-body systems consisting of mesons. Few-Body Syst., 61(4), 35–16pp.
Abstract: We present a work which is meant to inspire the few-body practitioners to venture into the study of new, more exotic, systems and to hadron physicists, working mostly on two-body problems, to move in the direction of studying related few-body systems. For this purpose we devote the discussions in the introduction to show how the input two-body amplitudes can be easily obtained using techniques of the chiral unitary theory, or its extensions to the heavy quark sector. We then briefly explain how these amplitudes can be used to solve the Faddeev equations or a simpler version obtained by treating the three-body scattering as that of a particle on a fixed center. Further, we give some examples of the results obtained by studying systems involving mesons. We have also addressed the field of many meson systems, which is currently almost unexplored, but for which we envisage a bright future. Finally, we give a complete list of works dealing with unconventional few-body systems involving one or several mesons, summarizing in this way the findings on the topic, and providing a motivation for those willing to investigate such systems.
|
|