Oset, E., Bayar, M., Dote, A., Hyodo, T., Khemchandani, K. P., Liang, W. H., et al. (2016). Two-, Three-, Many-body Systems Involving Mesons. Multimeson Condensates. Acta Phys. Pol. B, 47(2), 357–365.
Abstract: In this paper, we review results from studies with unconventional many-hadron systems containing mesons: systems with two mesons and one baryon, three mesons, some novel systems with two baryons and one meson, and finally, systems with many vector mesons, up to six, with their spins aligned forming states of increasing spin. We show that in many cases, one has experimental counterparts for the states found, while in some other cases, they remain as predictions, which we suggest to be searched in BESIII, Belle, LHCb, FAIR and other facilities.
|
Oset, E., Martinez Torres, A., Khemchandani, K. P., Roca, L., & Yamagata-Sekihara, J. (2012). Two, three, many body systems involving mesons. Prog. Part. Nucl. Phys., 67(2), 455–460.
Abstract: In this talk we show recent developments on few body systems involving mesons. We report on an approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two body off shell amplitude with three body forces stemming from the same chiral Lagrangians takes place. This removal of the unphysical off shell part of the amplitudes is most welcome and renders the approach unambiguous, showing that only on shell two body amplitudes need to be used. Within this approach, systems of two mesons and one baryon are studied, reproducing properties of the low lying 1/2(+) states. On the other hand we also report on multirho and K* multirho states which can be associated to known meson resonances of high spin.
|