|
Blankenburg, G., & Jones Perez, J. (2013). RGE behavior of SUSY with a U(2)(3) symmetry. Eur. Phys. J. C, 73(2), 2289–15pp.
Abstract: The first LHC results seem to disfavor, from the point of view of naturalness, any constrained MSSM realization with universal conditions at the SUSY-breaking scale. A more motivated scenario is given by split-family SUSY, in which the first two generations of squarks are heavy, compatible with a U(2)(3) flavor symmetry. We consider this flavor symmetry to be broken at a very high scale and study the consequences at low energies through its RGE evolution. Initial conditions compatible with a split scenario are found, and the preservation of correlations from minimal U(2)(3) breaking are checked. The various chiral operators in Delta F = 2 processes are analyzed, and we show that, due to LHC gluino bounds, the (LL)(RR) operators cannot always be neglected. Finally, we also study a possible extension of the U(2)(3) model compatible with the lepton sector.
|
|
|
Bustamante, M., Gago, A. M., & Jones Perez, J. (2011). SUSY renormalization group effects in ultra high energy neutrinos. J. High Energy Phys., 05(5), 133–26pp.
Abstract: We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: (Phi(0)(v epsilon+(v) over bar epsilon) : Phi(0)(v mu+(v) over bar mu) : Phi(0)(v tau+(v) over bar tau)) = (1 : 2 : 0), (0 : 1 : 0), (1 : 0 : 0), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q(2) >= 10(7) GeV(2). However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale. Cerenkov detector such as IceCube.
|
|
|
Calibbi, L., Hodgkinson, R. N., Jones Perez, J., Masiero, A., & Vives, O. (2012). Flavour and collider interplay for SUSY at LHC7. Eur. Phys. J. C, 72(2), 1863–26pp.
Abstract: The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb(-1) run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B-s -> μμand μ-> e gamma. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.
|
|
|
Jones Perez, J. (2014). Split-family SUSY, U(2)(5) flavour symmetry and neutrino physics. Eur. Phys. J. C, 74(2), 2772–9pp.
Abstract: In split-family SUSY, one can use a U(2)(3) symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous U(2)(5) symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the U(2)(2) symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a μ-> e gamma branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.
|
|