LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of the B-c(-) meson production fraction and asymmetry in 7 and 13 TeV pp collisions. Phys. Rev. D, 100(11), 112006–17pp.
Abstract: The production fraction of the B-c(-) meson with respect to the sum of B- and (B) over bar (0) mesons is measured in both 7 and 13 TeV center-of-mass (c.m.) energy pp collisions produced by the Large Hadron Collider (LHC), using the LHCb detector. The rate, approximately 3.7 per mine, does not change with energy, but shows a transverse momentum dependence. The B-c(-) – B-c(+) production asymmetry is also measured and is consistent with zero within the determined statistical and systematic uncertainties of a few percent.
|
LHCb Collaboration(Aaij, R. et al), Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., & Ruiz Vidal, J. (2022). Measurement of the B-s(0) -> mu(+)mu(-) decay properties and search for the B-0 -> mu(+)mu(-) and B-s(0) -> mu(+)mu(-) gamma decays. Phys. Rev. D, 105(1), 012010–34pp.
Abstract: An improved measurement of the decay B-s(0) -> mu(+)mu(-) and searches for the decays B-0 -> mu(+)mu(-) and B-s(0) -> mu(+)mu(-)gamma are performed at the LHCb experiment using data collected in proton-proton collisions at root s = 7, 8 and 13 TeV, corresponding to integrated luminosities of 1, 2 and 6 fb(-1), respectively. The B-s(0) -> mu(+)mu(-) branching fraction and effective lifetime are measured to be B(B-s(0) -> mu(+)mu(-)) = (3.09(-0.43-0.11)(+0.46+0.15)) x 10(-9) and tau(B-s(0) -> mu(+)mu(-)) = (2.07 +/- 0.29 +/- 0.03) ps, respectively, where the uncertain-ties include both statistical and systematic contributions. No significant signal for B-0 -> mu(+)mu(-) and B-s(0) -> mu(+)mu(-) gamma decays is found and the upper limits B(B-0 -> mu(+)mu(-)) < 2.6 x 10(-10) and B(B-s(0) -> mu(+)mu(-)gamma) 2.0 x 10(-9) at 95% confidence level are determined, where the latter is limited to the range m(mu mu) > 4.9 GeV/c(2). Additionally, the ratio between the B-0 -> mu(+)mu(-) and B-s(0) -> mu(+)mu(-) branching fractions is measured to be R mu+mu- < 0.095 at 95% confidence level. The results are in agreement with the Standard Model predictions.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Libralon, S., Martinez-Vidal, F., Oyanguren, A., et al. (2024). Measurement of the branching fraction of B0→ J/ψ π0 decays. J. High Energy Phys., 05(5), 065–27pp.
Abstract: The ratio of branching fractions between B-0 -> J/psi pi(0) and B+ -> J/psi K*+ decays is measured with proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb(-1). The measured value is B-B(0) -> -> J/psi pi(0)/B+ -> J/psi K*+ = (1.153 +/- 0.053 +/- 0.048) x 10-2, where the first uncertainty is statistical and the second is systematic. The branching fraction for B-0 -> J/psi pi(0) decays is determined using the branching fraction of the normalisation channel, resulting in B-B(0) -> J/psi pi(0) = (1.670 +/- 0.077 +/- 0.069 +/- 0.095) x 10-5, where the last uncertainty corresponds to that of the external input. This result is consistent with the current world average value and competitive with the most precise single measurement to date.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Measurement of the branching fraction of the B0 -> Ds+ pi- decay. Eur. Phys. J. C, 81(4), 314–15pp.
Abstract: A branching fraction measurement of the B0 -> Ds+</mml:msubsup>pi- decay is presented using proton-proton collision data collected with the LHCb experiment, corresponding to an integrated luminosity of 5.0<mml:mspace width=“0.166667em”></mml:mspace>fb-1. The branching fraction is found to be B(B0 -> Ds+</mml:msubsup>pi-)=(19.4 +/- 1.8 +/- 1.3 +/- 1.2)x10-6, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the B0 -> D-pi+, Ds+</mml:msubsup>-> K+K-pi+ and D--> K+pi-pi- branching fractions. This is the most precise single measurement of this quantity to date. As this decay proceeds through a single amplitude involving a b -> u charged-current transition, the result provides information on non-factorisable strong interaction effects and the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element <mml:msub>Vub. Additionally, the collision energy dependence of the hadronisation-fraction ratio <mml:msub>fs/<mml:msub>fd is measured through B<overbar></mml:mover>s0 -> Ds+pi- and B0 -> D-pi <mml:mo>+ decays.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0. Phys. Rev. D, 102(1), 012011–15pp.
Abstract: A measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0 is performed using proton- proton – collision data corresponding to an integrated luminosity of 5 fb(-1) collected by the LHCb experiment between 2011 and 2016. The branching fraction is determined to be B(B-s(0) -> (KSKS0)-K-0) = [8.3 +/- 1.6(stat) +/- 0.9(syst) +/- 0.8(norm) +/- 0.3(f(s)/f(d))] x 10(-6), where the first uncertainty is statistical, the second is systematic, and the third and fourth are due to uncertainties on the branching fraction of the normalization mode B-0 -> phi K(S)(0 )and the ratio of hadronization fractions f(s)/f(d). This is the most precise measurement of this branching fraction to date. Furthermore, a measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0 is performed relative to that of the B-s(0) -> (KSKS0)-K-0 channel, and is found to be B(B-s(0) -> (KSKS0)-K-0)/B(B-s(0) -> (KSKS0)-K-0) = [7.5 +/- 3.1(stat) 0.5(syst) +/- 0.3(f(s)/f(d))1 x 10(-2).
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Measurement of the Branching Fractions B(B0 → p(p)over-bar p(p)over-bar) and B(Bs0→ p(p)over-barp(p)over-bar). Phys. Rev. Lett., 131(9), 091901–11pp.
Abstract: Searches for the rare hadronic decays B-0 -> p (p) over barp (p) over bar and B-s(0) -> p (p) over barp (p) over bar are performed using proton-proton collision data recorded by the LHCb experiment and corresponding to an integrated luminosity of 9 fb-1. Significances of 9.3 sigma and 4.0 sigma, including statistical and systematic uncertainties, are obtained for the B-0 -> p (p) over barp (p) over bar and B-s(0) -> p (p) over barp (p) over bar signals, respectively. The branching fractions are measured relative to the topologically similar normalization decays B-0 -> J/psi(-> p (p) over bar )K*(0)(-> K+ pi(-) ) and B-s(0) -> J/psi(-> p (p) over bar )X phi(-> K+ K- ). The branching fractions are measured to be B(B-0 -> p (p) over barp (p) over bar) = (2.2 +/- 0.4 +/- 0.1 +/- 0.1) x 10(-8) and B(B-s(0) -> p (p) over barp (p) over bar) = (2.3 +/- 1.0 +/- 0.2 +/- 0.1) x 10(-8). In these measurements, the first uncertainty is statistical, the second is systematic, and the third one is due to the external branching fraction of the normalization channel.
|
LHCb Collaboration(Aaij, R. et al), Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Vidal, J., et al. (2022). Measurement of the charm mixing parameter y(CP)-y(CP)(K pi) using two-body D-0 meson decays. Phys. Rev. D, 105(9), 092013–17pp.
Abstract: A measurement of the ratios of the effective decay widths of D-0 -> pi(-)pi(+) and D-0 -> K- K+ decays over that of D-0 -> K-pi(+) decays is performed with the LHCb experiment using proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb(-1). These observables give access to the charm mixing parameters y(CP)(pi pi) – y(CP)(K pi )and y(CP)(KK) -y(CP)(K pi), and are measured as y(CP)(pi pi) – y(CP)(K pi) = (6.57 +/- 0.53 +/- 0.16) x 10(-3), y(CP)(KK) – y(CP)(K pi) = (7.08 +/- 0.30 +/- 0.14) x 10(-3), where the first uncertainties are statistical and the second systematic. The combination of the two measurements is Y-CP – y(CP)(K pi) = (6.96 +/- 0.26 +/- 0.13) x 10(-3), which is four times more precise than the previous world average.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Measurement of the CKM angle gamma and Bs0-Bs0bar mixing frequency with Bs0 -> Ds-/+ h +/ pi+/- pi-/+ decays. J. High Energy Phys., 03(3), 137–46pp.
Abstract: The CKM angle gamma is measured for the first time from mixing-induced CP violation between Bs0 -> Ds -/+ K pi +/- pi -/+ and Bs0bar -> Ds +/- K -/+ pi -/+ pi +/- decays reconstructed in proton-proton collision data corresponding to an integrated luminosity of 9 fb(-1) recorded with the LHCb detector. A time-dependent amplitude analysis is performed to extract the CP-violating weak phase gamma – 2 beta (s) and, subsequently, gamma by taking the Bs0-Bs0bar mixing phase beta (s) as an external input. The measurement yields gamma = (44 +/- 12) degrees modulo 180 degrees, where statistical and systematic uncertainties are combined. An alternative model-independent measurement, integrating over the five-dimensional phase space of the decay, yields gamma = (44 -13+20) degrees modulo 180 degrees. Moreover, the Bs0-Bs0bar oscillation frequency is measured from the flavour-specific control channel Bs0 -> Ds- pi+ pi+ pi- to be m(s) = (17.757 +/- 0.007(stat) +/- 0.008(syst)) ps(-1), consistent with and more precise than the current world-average value.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Measurement of the CKM angle gamma in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> K(S)(0)h(+)h(-). J. High Energy Phys., 02(2), 169–36pp.
Abstract: A measurement of CP-violating observables is performed using the decays B-+/- -> DK +/- and B-+/- -> D pi(+/-), where the D meson is reconstructed in one of the self-conjugate three-body final states K-S(0)pi(+)pi(-) and (KSK+K-)-K-0 (commonly denoted K(S)(0)h(+)h(-)). The decays are analysed in bins of the D-decay phase space, leading to a measurement that is independent of the modelling of the D-decay amplitude. The observables are inter- preted in terms of the CKM angle gamma. Using a data sample corresponding to an integrated luminosity of 9 fb(-1) collected in proton-proton collisions at centre-of mass energies of 7, 8, and 13 TeV with the LHCb experiment, gamma is measured to be (68.7(-5.1)(+5.2))degrees. The hadronic parameters r(B)(DK), r(B)(D pi), delta(DK)(B), and delta(D pi)(B), which are the ratios and strong-phase differences of the suppressed and favoured B-+/- decays, are also reported.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Measurement of the CKM angle γ in the B0 → D K*0 channel using self-conjugate D → KS0 h+ h- decays. Eur. Phys. J. C, 84(2), 206–18pp.
Abstract: A model-independent study of CP violation in B-0 -> DK (*0) decays is presented using data corresponding to an integrated luminosity of 9 fb(-1) collected by the LHCb experiment at centre-of-mass energies of v s = 7, 8 and 13TeV. The CKM angle. is determined by examining the distributions of signal decays in phase-space bins of the self-conjugate D. K(S)(0)h(+) h(-) decays, where h = p, K. Observables related to CP violation are measured and the angle. is determined to be = (49+22 -19). Measurements of the amplitude ratio and strong-phase difference between the favoured and suppressed B-0 decays are also presented.
|