LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Amplitude analysis of B0 -> D0bar Ds+ pi- and B+ -> D- Ds+ pi+ decays. Phys. Rev. D, 108(1), 012017–30pp.
Abstract: Resonant contributions in B0 & RARR; over bar D0D+s & pi;- and B+ & RARR; D-D+s & pi;+ decays are determined with an amplitude analysis, which is performed both separately and simultaneously, where in the latter case isospin symmetry between the decays is assumed. The analysis is based on data collected by the LHCb detector in proton-proton collisions at center-of-mass energies of 7, 8, and 13 TeV. The full data sample corresponds to an integrated luminosity of 9 fb-1. A doubly charged spin-0 open-charm tetraquark candidate together with a neutral partner, both with masses near 2.9 GeV, are observed in the Ds & pi; decay channel.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Amplitude analysis of the B+ -> D+D-K+ decay. Phys. Rev. D, 102(11), 112003–32pp.
Abstract: Results are reported from an amplitude analysis of the B+ -> D+D-K+ decay. The analysis is carried out using LHCb proton-proton collision data taken at root s = 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb(-1). In order to obtain a good description of the data, it is found to be necessary to include new spin-0 and spin-1 resonances in the D-K+ channel with masses around 2.9 GeV/c(2), and a new spin-0 charmonium resonance in proximity to the spin-2 chi(c2)(3930) state.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Amplitude analysis of the B+ -> pi(+)pi(+)pi(-) decay. Phys. Rev. D, 101(1), 012006–46pp.
Abstract: The results of an amplitude analysis of the charmless three-body decay B+ -> pi(+)pi(+)pi(-) , in which CP-violation effects are taken into account, are reported. The analysis is based on a data sample corresponding to an integrated luminosity of 3 fb(-1) of pp collisions recorded with the LHCb detector. The most challenging aspect of the analysis is the description of the behavior of the pi(+)pi(-) S-wave contribution, which is achieved by using three complementary approaches based on the isobar model, the K-matrix formalism, and a quasi-model-independent procedure. Additional resonant contributions for all three methods are described using a common isobar model, and include the rho(770)(0), omega(782)(0) and rho(1450)(0) resonances in the pi(+)pi(-) P-wave, the f(2) (1270) resonance in the pi(+)pi D- -wave, and the rho(3) (1690)(0) resonance in the pi(+)pi(-) F-wave. Significant CP-violation effects are observed in both S- and D-waves, as well as in the interference between the S- and P-waves. The results from all three approaches agree and provide new insight into the dynamics and the origin of CP-violation effects in B+ -> pi(+)pi(+)pi(-) decays.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Amplitude analysis of the B0 (s)! K0K0 decays and measurement of the branching fraction of the B0! K0K0 decay. J. High Energy Phys., 07(7), 032–31pp.
Abstract: The B0 K0K0 and B0 s K0K0 decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3 fb. An untagged and timeintegrated amplitude analysis of B0 (s) (K+)(K) decays in two-body invariant mass regions of 150MeV/c2 around the K0 mass is performed. A stronger longitudinal polarisation fraction in the B0 K0K0 decay, fL = 0 : 724 0 : 051 (stat) 0 : 016 (syst), is observed as compared to fL = 0 : 240 0 : 031 (stat) 0 : 025 (syst) in the B0 s K0K0 decay. The ratio of branching fractions of the two decays is measured and used to determine B (B0 K0K0) = (8 : 0 0 : 9 (stat) 0 : 4 (syst)) x 10(-7).
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Amplitude Analysis of the B0 -> K*0 μ+μ- Decay. Phys. Rev. Lett., 132(13), 131801–13pp.
Abstract: An amplitude analysis of the B-0 -> K*(0) mu(+)mu(-) decay is presented using a dataset corresponding to an integrated luminosity of 4.7 fb(-1) of pp collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q(2)-unbinned amplitude analysis, where q(2) is the mu(+)mu(-) invariant mass squared. Long-distance contributions, which originate from nonfactorizable QCD processes, are systematically investigated, and the most accurate assessment to date of their impact on the physical observables is obtained. The pattern of measured corrections to the short-distance couplings is found to be consistent with previous analyses of b- to s-quark transitions, with the largest discrepancy from the standard model predictions found to be at the level of 1.8 standard deviations. The global significance of the observed differences in the decay is 1.4 standard deviations.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Amplitude analysis of the D+-> pi(-)pi(+)pi(+) decay and measurement of the pi(-)pi(+) S-wave amplitude. J. High Energy Phys., 06(6), 044–28pp.
Abstract: An amplitude analysis of the D+-> (-)pi(+)pi(+) decay is performed with a sample corresponding to 1.5 fb(-1) of integrated luminosity of pp collisions at a centre-of-mass energy root s = 8 TeV collected by the LHCb detector in 2012. The sample contains approximately six hundred thousand candidates with a signal purity of 95%. The resonant structure is studied through a fit to the Dalitz plot where the pi(-)pi(+) S-wave amplitude is extracted as a function of pi(-)pi(+) mass, and spin-1 and spin-2 resonances are included coherently through an isobar model. The S-wave component is found to be dominant, followed by the rho(770)(0)pi(+) and f(2)(1270)pi(+) components. A small contribution from the omega(782) -> pi(-)pi(+) decay is seen for the first time in the D+-> pi(-)pi(+)pi(+) decay.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Amplitude analysis of the D+s → π-π+π+ decay. J. High Energy Phys., 07(7), 204–35pp.
Abstract: A Dalitz plot analysis of the D-s(+) -> pi(-)pi(+)pi(+) decay is presented. The analysis is based on proton-proton collision data recorded by the LHCb experiment at a centre-of-mass energy of 8TeV and corresponding to an integrated luminosity of 1.5 fb(-1). The resonant structure of the decay is obtained using a quasi-model-independent partial-wave analysis, in which the pi(+)pi(-) S-wave amplitude is parameterised as a generic complex function determined by a fit to the data. The S-wave component is found to be dominant, followed by the contribution from spin-2 resonances and a small contribution from spin-1 resonances. The latter includes the first observation of the D-s(+) -> omega(782)pi(+) channel in the D-s(+) -> pi(-)pi(+)pi(+) decay. The resonant structures of the D-s(+) -> pi(-)pi(+)pi(+) and D+ -> pi(-)pi(+)pi(+) decays are compared, providing information about the mechanisms for the hadron formation in these decays.
|
LHCb Collaboration(Aaij, R. et al), Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., Remon Alepuz, C., et al. (2023). Amplitude analysis of the Lambdac+ -> p K- pi+ decay and Lambdac+ baryon polarization measurement in semileptonic beauty hadron decays. Phys. Rev. D, 108(1), 012023–27pp.
Abstract: An amplitude analysis of A+c – pK- & pi;+ decays together with a measurement of the A+c polarization vector in semiOleptonic beauty hadron decays is presented. A sample of 400 000 candidates is selected from proton-proton collisions recorded by the LHCb detector at a center-of-mass energy of 13 TeV. An amplitude model is developed and the resonance fractions as well as two- and three-body decay parameters are reported. The mass and width of the Ao2000 thorn state are also determined. A significant A+c polarization is found. A large sensitivity of the A+c – pK-& pi;+ decay to the polarization is seen, making the amplitude model suitable for A+c polarization measurements in other systems.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Libralon, S., Martinez-Vidal, F., Oyanguren, A., et al. (2024). Amplitude analysis of the radiative decay Bs0 → K+K-γ. J. High Energy Phys., 08(8), 093–39pp.
Abstract: A search for radiative decay of B-s(0) mesons to orbitally excited K+K- states is performed using proton proton collisions recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb(-1). The dikaon spectrum in the mass range m(KK) < 2400 MeV/c(2) is dominated by the phi(1020) resonance that accounts for almost 70% of the decay rate. Considering the possible contributions of f(2)(1270), f(2)'(1525) and f(2)(2010) meson states, the overall tensor contribution to the amplitude is measured to be F-{f2} = 16.8 +/- 0.5 (stat.) +/- 0.7 (syst.)%, mostly dominated by the f2 '(1525) state. Several statistically equivalent solutions are obtained for the detailed resonant structure depending on whether the smaller amplitudes interfere destructively or constructively with the dominant amplitude. The preferred solution that corresponds to the lowest values of the fit fractions along with constructive interference leads to the relative branching ratio measurement B(B-s(0) -> f(2)'gamma)/B(B-s(0) -> phi gamma) = 19.4(-0.8)(+0.9)(stat.)(-0.5)(+1.4) (syst.) +/- 0.5(B)%, where the last uncertainty is due to the ratio of measured branching fractions to the K+K- final state. This result represents the first observation of the radiative B-s(0) -> f(2)'(1525)gamma decay, which is the second radiative transition observed in the B-s(0) sector.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Amplitude analysis of the Λb0 → pK- γ decay. J. High Energy Phys., 06(6), 098–37pp.
Abstract: The resonant structure of the radiative decay Lambda(0)(b) -> pK(-) gamma in the region of proton-kaon invariant-mass up to 2.5 GeV/c(2) is studied using proton-proton collision data recorded at centre-of-mass energies of 7, 8, and 13TeV collected with the LHCb detector, corresponding to a total integrated luminosity of 9 fb(-1). Results are given in terms of fit and interference fractions between the different components contributing to this final state. Only. resonances decaying to pK(-) are found to be relevant, where the largest contributions stem from the Lambda(1520), Lambda(1600), Lambda(1800), and Lambda(1890) states.
|