LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Observation of a Resonant Structure near the Ds+Ds- Threshold in the B+ -> Ds+Ds- K+ Decay. Phys. Rev. Lett., 131(7), 071901–12pp.
Abstract: An amplitude analysis of the B thorn & RARR; D thorn s D-s K thorn decay is carried out to study for the first time its intermediate resonant contributions, using proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV. A near-threshold peaking structure, referred to as X(3960), is observed in the D thorn s D-s invariant-mass spectrum with significance greater than 12 standard deviations. The mass, width, and the quantum numbers of the structure are measured to be 3956 1 5 1 10 MeV, 43 1 13 1 8 MeV, and JPC = 0 thorn thorn , respectively, where the first uncertainties are statistical and the second systematic. The properties of the new structure are consistent with recent theoretical predictions for a state composed of cc over bar ss over bar quarks. Evidence for an additional structure is found around 4140 MeV in the D thorn s D-s invariant mass, which might be caused either by a new resonance with the 0 thorn thorn assignment or by a J=& psi;& phi; & LRARR; D thorn s D-s coupled-channel effect.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). First branching fraction measurement of the suppressed decay Xi(0)(c) -> pi(-) Lambda(+)(c). Phys. Rev. D, 102(7), 071101–11pp.
Abstract: The Xi(0)(c) baryon is unstable and usually decays into charmless final states by the c -> sud transition. It can, however, also disintegrate into a pi(-) meson and a Lambda(+)(c) baryon via s quark decay or via cs -> dc weak scattering. The interplay between the latter two processes governs the size of the branching fraction B(Xi(0)(c) -> pi(-) Lambda(+)(c)), first measured here to be (0.55 +/- 0.02 +/- 0.18)%, where the first uncertainty is statistical and second systematic. This result is compatible with the larger of the theoretical predictions that connect models of hyperon decays using partially conserved axial currents and SU(3) symmetry with those involving the heavy-quark expansion and heavy-quark symmetry. In addition, the branching fraction of the normalization channel, B(Xi(+)(c) -> pK(-) pi(+)) = (1.135 +/- 0.002 +/- 0.387)% is measured.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Measurement of the prompt-production cross-section ratio sigma(chi(c2))/sigma(chi(c1)) in pPb collisions at root s(NN)=8.16 TeV. Phys. Rev. C, 103(6), 064905–10pp.
Abstract: This article reports the first measurement of prompt chi(c1) and chi(c2) charmonium production in nuclear collisions at Large Hadron Collider energies. The cross-section ratio sigma(chi(c2))/sigma(chi(c1)) is measured in pPb collisions at root s(NN) = 8.16 TeV, collected with the LHCb experiment. The chi(c1,2) states are reconstructed via their decay to a J/psi meson, subsequently decaying into a pair of oppositely charged muons, and a photon, which is reconstructed in the calorimeter or via its conversion in the detector material. The cross-section ratio is consistent with unity in the two considered rapidity regions. Comparison with a corresponding cross-section ratio previously measured by the LHCb Collaboration in pp collisions suggests that chi(c1) and chi(c2) states are similarly affected by nuclear effects occurring in pPb collisions.
|
LHCb Collaboration(Aaij, R. et al), Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., & Ruiz Vidal, J. (2022). Evidence for a New Structure in the J/psi p and J/psi(p)over-bar Systems in B-s(0) -> J/psi p(p)over-bar Decays. Phys. Rev. Lett., 128(6), 062001–11pp.
Abstract: An amplitude analysis of flavor-untagged B-s(0) -> J=psi p (p) over bar decays is performed using a sample of 797 +/- 31 decays reconstructed with the LHCb detector. The data, collected in proton-proton collisions between 2011 and 2018, correspond to an integrated luminosity of 9 fb(-1). Evidence for a new structure in the J=psi p and J=psi(p) over bar systems with a mass of 4337(-4-2)(+7+2) MeV and a width of 29(-12-14)(+26+14) MeV is found, where the first uncertainty is statistical and the second systematic, with a significance in the range of 3.1 to 3.7 sigma, depending on the assigned J(P) hypothesis.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Evidence for Modification of b Quark Hadronization in High-Multiplicity pp Collisions at √s=13 TeV. Phys. Rev. Lett., 131(6), 061901–11pp.
Abstract: The production rate of B-s(0) mesons relative to B-0 mesons is measured by the LHCb experiment in pp collisions at a center-of-mass energy root s = 13 TeV over the forward rapidity interval 2 < y < 4.5 as a function of the charged particle multiplicity measured in the event. Evidence at the 3.4 sigma level is found for an increase of the ratio of B-s(0) to B-0 cross sections with multiplicity at transverse momenta below 6 GeV=c, with no significant multiplicity dependence at higher transverse momentum. Comparison with data from e(+)e(-) collisions implies that the density of the hadronic medium may affect the production rates of B mesons. This is qualitatively consistent with the emergence of quark coalescence as an additional hadronization mechanism in high-multiplicity collisions.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN=5.02 TeV with the LHCb detector. Phys. Rev. C, 109(5), 054908–12pp.
Abstract: Flow harmonic coefficients, nu(n), which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV. The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of B+, B-0 and Lambda(0)(b) production in pPb collisions at, root(NN)-N-s=8.16 TeV. Phys. Rev. D, 99(5), 052011–21pp.
Abstract: The production of B+, B-0 and Lambda(0)(b), hadrons is studied in proton-lead collisions at a center-of-mass energy per nucleon pair of root(NN)-N-s T = 8.16 TeV recorded with the LHCb detector at the LHC. The measurement uses a dataset corresponding to an integrated luminosity of 12.2 +/- 0.3 nb(-1) for the case where the proton beam is projected into the LHCb detector (corresponding to measuring hadron production at positive rapidity) and 18.6 +/- 0.5 nb(-1) for the lead beam projected into the LHCb detector (corresponding to measuring hadron production at negative rapidity). Double-differential cross sections are measured and used to determine forward-backward ratios and nuclear modification factors, which directly probe nuclear effects in the production of beauty hadrons. The double-differential cross sections are measured as a function of the beauty-hadron transverse momentum and rapidity in the nucleon-nucleon center-of-mass frame. Forward-to-backward cross section ratios and nuclear modification factors indicate a significant nuclear suppression at positive rapidity. The ratio of Lambda(0)(b), over B-0 production cross sections is reported and is consistent with the corresponding measurement in pp collisions.
|
LHCb Collaboration(Aaij, R. et al), Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., & Ruiz Vidal, J. (2021). Search for CP violation in Xi(-)(b) -> pK(-)K(-) decays. Phys. Rev. D, 104(5), 052010–29pp.
Abstract: A search for CP violation in charmless three-body Xi(-)(b) -> pK(-)K(-) decays is performed using pp collision data recorded with the LHCb detector, corresponding to integrated luminosities of 1 fb(-1) at a center-of-mass energy root S = 7 TeV, 2 fb(-1) at root S = 8 TeV and 2 fb(-1) at = 13 TeV. A good description of the phase-space distribution is obtained with an amplitude model containing contributions from Sigma(1385), Lambda(1405), Lambda(1520), Lambda(1670), Sigma(1775) and Sigma(1915) resonances. The model allows for CP violation effects, which are found to be consistent with zero. The branching fractions of Xi(-)(b) -> Sigma(1385)K-, Xi(-)(b) -> Lambda(1405)K-, Xi(-)(b) -> Lambda(1520)K-, Xi(-)(b) -> Lambda(1670)K-, Xi(-)(b) -> Sigma(1775)K- and Xi(-)(b) -> Sigma(1915)K- decays arc also reported. In addition, an upper limit is placed on the product of ratios of Omega(-)(b) and Xi(-)(b) fragmentation fractions and the Omega(-)(b) -> pK(-)K(-) and Xi(-)(b) -> pK(-)K(-) branching fractions.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Determination of short- and long-distance contributions in B0 → K*0 μ+ μ- decays. Phys. Rev. D, 109(5), 052009–28pp.
Abstract: An amplitude analysis of the B-0 -> K-*0 mu(+)mu(-) decay is presented. The analysis is based on data collected by the LHCb experiment from proton-proton collisions at root s = 7, 8 and 13 TeV, corresponding to an integrated luminosity of 4.7 fb(-1). For the first time, Wilson coefficients and nonlocal hadronic contributions are accessed directly from the unbinned data, where the latter are parametrized as a function of q(2) with a polynomial expansion. Wilson coefficients and nonlocal hadronic parameters are determined under two alternative hypotheses: the first relies on experimental information alone, while the second one includes information from theoretical predictions for the nonlocal contributions. Both models obtain similar results for the parameters of interest. The overall level of compatibility with the Standard Model is evaluated to be between 1.8 and 1.9 standard deviations when looking at the C-9 Wilson coefficient alone, and between 1.3 and 1.4 standard deviations when considering the full set of C-9; C(1)0; C-9(') and C-10(') Wilson coefficients. The ranges reflect the theoretical assumptions made in the analysis.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Measurement of the mass difference and relative production rate of the Ωb- and Ξb- baryons. Phys. Rev. D, 108(5), 052008–16pp.
Abstract: The mass difference between the Omega -b and Xi -b baryons is measured using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb-1, and is found to be mo Omega -bthorn – mo Xi -bthorn 1/4 248.54? 0.51ostatthorn ? 0.38osystthorn MeV=c2. The mass of the Omega -b baryon is measured to be mo Omega -bthorn 1/4 6045.9 ? 0.5ostatthorn ? 0.6osystthorn MeV=c2. This is the most precise determination of the Omega -b mass to date. In addition, the production rate of Omega -b baryons relative to that of Xi -b baryons is measured for the first time in pp collisions, using an LHCb dataset collected at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 6 fb-1. Reconstructing beauty baryons in the kinematic region 2 < <eta> < 6 and pT < 20 GeV=c with their decays to a J=psi meson and a hyperon, the ratio f Omega- b f Xi- b tation fractions of b quarks into Omega -b and Xi -b baryons, respectively, and B represents the branching fractions of their respective decays. Bo Omega- b -> J=psi Omega -thorn x Bo Xi- b -> J=psi Xi -thorn 1/4 0.120 ? 0.008ostatthorn ? 0.008osystthorn, is obtained, where f Omega- b and f Xi -b are the fragmen-
|