LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV pp collisions. Phys. Lett. B, 797, 134789–12pp.
Abstract: Decays of B-s(0) and (B) over bar (0)(s) mesons into J/psi pi(+)pi(-) final states are studied in a data sample corresponding to 1.9 fb(-1) of integrated luminosity collected with the LHCb detector in 13 TeV pp collisions. A time-dependent amplitude analysis is used to determine the final-state resonance contributions, the CP-violating phase phi(s) = -0.057 +/- 0.060 +/- 0.011 rad, the decay-width difference between the heavier mass B-s(0) eigenstate and the B-0 meson of -0.050 +/- 0.004 +/- 0.004 ps(-1), and the CP-violating parameter vertical bar lambda vertical bar = 1.01(-0.06)(+0.08) +/- 0.03, where the first uncertainty is statistical and the second systematic. These results are combined with previous LHCb measurements in the same decay channel using 7 TeV and 8 TeV pp collisions obtaining phi(s) = 0.002 +/- 0.044 +/- 0.012 rad, and vertical bar lambda vertical bar = 0.949 +/- 0.036 +/- 0.019.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2022). Study of coherent J/psi production in lead-lead collisions at root S-NN=5 TeV. J. High Energy Phys., 07(7), 117–19pp.
Abstract: Coherent production of J/psi mesons is studied in ultraperipheral lead-lead collisions at a nucleon-nucleon centre-of-mass energy of 5 TeV, using a data sample collected by the LHCb experiment corresponding to an integrated luminosity of about 10 μb(-1). The J/psi mesons are reconstructed in the dimuon final state and are required to have transverse momentum below 1 GeV. The cross-section within the rapidity range of 2.0 < y < 4.5 is measured to be 4.45 +/- 0.24 +/- 0.18 +/- 0.58 mb, where the first uncertainty is statistical, the second systematic and the third originates from the luminosity determination. The cross-section is also measured in J/psi rapidity intervals. The results are compared to predictions from phenomenological models.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2022). Precise determination of the B-s(0)-B-s(-0) oscillation frequency. Nat. Phys., 18, 54–58.
Abstract: Mesons comprising a beauty quark and strange quark can oscillate between particle (B-s(0)) and antiparticle (B-s(-0)) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Delta m(s). Here we present a measurement of Delta m(s) using B-s(0) -> D-s(-)pi(+) decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Delta m(s) = 17.7683 +/- 0.0051 +/- 0.0032 ps(-1), where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Delta m(s) precision by a factor of two. We combine this result with previous LHCb measurements to determine Delta m(s) = 17.7656 +/- 0.0057 ps(-1), which is the legacy measurement of the original LHCb detector.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2022). Test of lepton universality in beauty-quark decays. Nat. Phys., 18(3), 277–282.
Abstract: The standard model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown that a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton–proton collision data collected with the LHCb detector at CERN's Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the standard model, such as a new fundamental interaction between quarks and leptons.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2022). J/psi photoproduction in Pb-Pb peripheral collisions at root S-NN=5 TeV. Phys. Rev. C, 105(3), L032201–10pp.
Abstract: The photoproduction of J/psi mesons at low transverse momentum is studied in peripheral lead-lead collisions collected by the LHCb Collaboration at a center-of-mass energy per nucleon pair of 5 TeV, corresponding to an integrated luminosity of 210 μb(-1). The J/psi candidates are reconstructed through the prompt decay into two muons of opposite charge in the rapidity region of 2.0 < y < 4.5. The results significantly improve previous measurements and are compared to the latest theoretical prediction.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Search for the rare decay B-0 -> J/psi phi. Chin. Phys. C, 45(4), 043001–14pp.
Abstract: A search for the rare decay B-0 -> J/psi phi, is performed using pp collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb(-1). No significant signal of the decay is observed and an upper limit of 1.1 x 10(-7) at 90% confidence level is set on the branching fraction.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Search for the doubly heavy baryons Omega(0)(bc) and Xi(0)(bc) decaying to Lambda(+)(c)pi(-) and Xi(+)(c)pi-. Chin. Phys. C, 45(9), 093002–12pp.
Abstract: The first search for the doubly heavy Omega(0)(bc) baryon and a search for the Xi(0)(bc) baryon are performed using collision data collected via the experiment from 2016 to 2018 at a centre-of-mass energy of, corresponding to an integrated luminosity of 5.2 fb(-1). The baryons are reconstructed via their decays to Lambda(+)(-)(c)(pi) and Xi(+)(c)pi(-). No significant excess is found for invariant masses between 6700 and 7300 MeV/c(2), in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 MeV/c. Upper limits are set on the ratio of the Omega(0)(bc) and Xi(0)(bc) production cross-section times the branching fraction to Lambda(+)(c)pi(-)(Xi(+)(c)pi(-)) relative to that of the Lambda(0)(b)(Xi(0)(b)) baryon, for different lifetime hypotheses, at 95% confidence level. The upper limits range from 0.5x10(-4) to 2.5x10(-4) for the Omega(0)(bc) -> Lambda(+)(c)pi(-) (Xi(0)(bc) -> Lambda(+)(c)pi(-)) decay, pending on the considered mass and lifetime of the Omega(0)(bc) (Xi(0)(bc)) baryon.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Search for long-lived particles decaying to e(+/-)mu(-/+)nu. Eur. Phys. J. C, 81(3), 261–16pp.
Abstract: Long-lived particles decaying to e(+/-) mu(-/+)nu, with masses between 7 and 50 GeV/c(2) and lifetimes between 2 and 50 ps, are searched for by looking at displaced vertices containing electrons and muons of opposite charges. The search is performed using 5.4 fb(-1) of pp collisions collected with the LHCb detector at a centre-of-mass energy of root s = 13 TeV. Three mechanisms of production of long-lived particles are considered: the direct pair production from quark interactions, the pair production from the decay of a Standard-Model-like Higgs boson with a mass of 125 GeV/c(2), and the charged current production from an on-shell W boson with an additional lepton. No evidence of these long-lived states is obtained and upper limits on the production cross-section times branching fraction are set on the different production modes.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Measurement of the branching fraction of the B0 -> Ds+ pi- decay. Eur. Phys. J. C, 81(4), 314–15pp.
Abstract: A branching fraction measurement of the B0 -> Ds+</mml:msubsup>pi- decay is presented using proton-proton collision data collected with the LHCb experiment, corresponding to an integrated luminosity of 5.0<mml:mspace width=“0.166667em”></mml:mspace>fb-1. The branching fraction is found to be B(B0 -> Ds+</mml:msubsup>pi-)=(19.4 +/- 1.8 +/- 1.3 +/- 1.2)x10-6, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the B0 -> D-pi+, Ds+</mml:msubsup>-> K+K-pi+ and D--> K+pi-pi- branching fractions. This is the most precise single measurement of this quantity to date. As this decay proceeds through a single amplitude involving a b -> u charged-current transition, the result provides information on non-factorisable strong interaction effects and the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element <mml:msub>Vub. Additionally, the collision energy dependence of the hadronisation-fraction ratio <mml:msub>fs/<mml:msub>fd is measured through B<overbar></mml:mover>s0 -> Ds+pi- and B0 -> D-pi <mml:mo>+ decays.
|
LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). First measurement of the CP-violating phase in B-s(0) -> J/Psi (-> e(+) e(-))phi decays. Eur. Phys. J. C, 81(11), 1026–18pp.
Abstract: A flavour-tagged time-dependent angular analysis of B-s(0) -> J/Psi phi decays is presented where the J/Psi meson is reconstructed through its decay to an e(+)e(-) pair. The analysis uses a sample of pp collision data recorded with the LHCb experiment at centre-of-mass energies of 7 and 8TeV, corresponding to an integrated luminosity of 3 fb(-1). The CP-violating phase and lifetime parameters of the B-s(0) s system are measured to be phi(s) = 0.00 +/- 0.28 +/- 0.07 rad, Delta Gamma(s) = 0.115 +/- 0.045 +/- 0.011 ps(-1) and Delta Gamma(s) = 0.608 +/- 0.018 +/- 0.012 ps(-1) where the first uncertainty is statistical and the second systematic. This is the first time that CP-violating parameters are measured in the B-s(0) -> J/Psi phi decay with an e+e- pair in the final state. The results are consistent with previous measurements in other channels and with the Standard Model predictions.
|