LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Observation of the doubly Cabibbo-suppressed decay Xi(+)(c) -> p phi. J. High Energy Phys., 04(4), 084–18pp.
Abstract: The doubly Cabibbo- suppressed decay Xi(+)(c) -> p phi with ! K+K is observed for the fi rst time, with a statistical signi fi cance of more than fi fteen standard deviations. The data sample used in this analysis corresponds to an integrated luminosity of 2 fb recorded with the LHCb detector in pp collisions at a centre- of- mass energy of 8TeV. The ratio of branching fractions between the decay + c ! p and the singly Cabibbo- suppressed decay + c ! pK is measured to be B (Xi(+)(c) -> p phi) B (Xi(+)(c) -> p phi) = (19 : 8 0 : 7 0 : 9 0 : 2) 10 where the fi rst uncertainty is statistical, the second systematic and the third due to the knowledge of the Xi(+)(c) -> pK(+)pi(+) branching fraction.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Study of the B-0 (770)degrees K-*(892)(0) decay with an amplitude analysis of B-0 ((+-))(K+pi(-)) decays. J. High Energy Phys., 05(5), 026–31pp.
Abstract: An amplitude analysis of B-0 ((+-))(K+-) decays is performed in the two-body invariant mass regions 300 < m((+-)) < 1100 MeV/c(2), accounting for the (0), , f(0)(500), f(0)(980) and f(0)(1370) resonances, and 750 < m(K+-) < 1200 MeV/c(2), which is dominated by the K-*(892)(0) meson. The analysis uses 3 fb(-1) of proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The CP averages and asymmetries are measured for the magnitudes and phase differences of the con- tributing amplitudes. The CP-averaged longitudinal polarisation fractions of the vector-vector modes are found to be fK*0 = 0.164 +/- 0.015 +/- 0.022 and fK*0 = 0.68 +/- 0.17 +/- 0.16, and their CP asymmetries, AK*0 = -0.62 +/- 0.09 +/- 0.09 and AK*0 = -0.13 +/- 0.27 +/- 0.13, where the first uncertainty is statistical and the second systematic.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Amplitude analysis of B-s(0) -> K-S(0) K-+/-pi(-/+) decays. J. High Energy Phys., 06(6), 114–28pp.
Abstract: The first untagged decay-time-integrated amplitude analysis of B 0 s ! K 0 S K decays is performed using a sample corresponding to 3: 0 fb of pp collision data recorded with the LHCb detector during 2011 and 2012. The data are described with an amplitude model that contains contributions from the intermediate resonances K 9892) 0;+, K 2 91430) 0;+ and K 0 91430) 0;+, and their charge conjugates. Measurements of the branching fractions of the decay modes B 0 s ! K 9892) K and B 0 s ! K 9892) 0 K 0 are in agreement with, and more precise than, previous results. The decays B 0 s ! K 0 91430) K and B 0 s ! K 0 91430) 0 K 0 are observed for the fi rst time, each with signi fi cance over 10 standard deviations.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Near-threshold DD spectroscopy and observation of a new charmonium state. J. High Energy Phys., 07(7), 035–23pp.
Abstract: Using proton-proton collision data, corresponding to an integrated luminosity of 9 fb, collected with the LHCb detector between 2011 and 2018, a new narrow charmonium state, the X(3842) resonance, is observed in the decay modes X(3842) ! D0 D 0 and X(3842) ! D+D. The mass and the natural width of this state are measured to be where the fi rst uncertainty is statistical and the second is systematic. The observed mass and narrow natural width suggest the interpretation of the new state as the unobserved spin-3 3 1 3 D 3 charmonium state. In addition, prompt hadroproduction of the (3770) and 2 (3930) states is observed for the fi rst time, and the parameters of these states are measured to be m (3770) = 3778 : 1 0 : 7 0 : 6MeV where the first uncertainty is statistical and the second is systematic.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Amplitude analysis of the B0 (s)! K0K0 decays and measurement of the branching fraction of the B0! K0K0 decay. J. High Energy Phys., 07(7), 032–31pp.
Abstract: The B0 K0K0 and B0 s K0K0 decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3 fb. An untagged and timeintegrated amplitude analysis of B0 (s) (K+)(K) decays in two-body invariant mass regions of 150MeV/c2 around the K0 mass is performed. A stronger longitudinal polarisation fraction in the B0 K0K0 decay, fL = 0 : 724 0 : 051 (stat) 0 : 016 (syst), is observed as compared to fL = 0 : 240 0 : 031 (stat) 0 : 025 (syst) in the B0 s K0K0 decay. The ratio of branching fractions of the two decays is measured and used to determine B (B0 K0K0) = (8 : 0 0 : 9 (stat) 0 : 4 (syst)) x 10(-7).
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of CP observables in the process B-0 -> DK*0 with two- and four-body D decays. J. High Energy Phys., 08(8), 041–30pp.
Abstract: Measurements of CP observables in B-0 -> DK0 decays are presented, where D represents a superposition of D-0 and D0 states. The D meson is reconstructed in the two-body final states K+pi(-), pi K-+(-), K+K- and pi(+)pi(-), and, for the first time, in the fourbody final states K+pi(-)pi(+)pi(-), pi K-+(-)pi(+)pi(-) and pi(+)pi(-)pi(+)pi(-). The analysis uses a sample of neutral B mesons produced in proton-proton collisions, corresponding to an integrated luminosity of 1.0, 2.0 and 1.8 fb(-1) collected with the LHCb detector at centre-of-mass energies of ,8 and 13 TeV, respectively. First observations of the decays B-0 -> D(pi K-+(-))K-0 and B-0 -> D(pi(+)pi(-)pi(+)pi(-))K-0 are obtained. The measured observables are interpreted in terms of the CP -violating weak phase gamma.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Observation of the Lambda(0)(b) -> chi(c1) (3872)pK(-) decay. J. High Energy Phys., 09(9), 028–20pp.
Abstract: Using proton-proton collision data, collected with the LHCb detector and corresponding to 1.0, 2.0 and 1.9 fb(-1) of integrated luminosity at the centre-of-mass energies of 7, 8, and 13 TeV, respectively, the decay Lambda(0)(b) -> chi(c1)(3872)pK(-) with chi(c1)(3872) -> J/psi pi(+)pi(-) is observed for the first time. The significance of the observed signal is in excess of seven standard deviations. It is found that (58 +/- 15)% of the decays proceed via the two-body intermediate state chi(c1)(3872)Lambda(1520). The branching fraction with respect to that of the Lambda(0)(b) -> psi(2S)pK(-) decay mode, where the psi(2S) meson is reconstructed in the J/psi pi(+)pi(-) final state, is measured to be: B(Lambda(0)(b) -> chi(c1)(3872)pK(-))/B (Lambda(0)(b) -> psi(2S)pK(-)) x B(chi(c1)(3872) -> J/psi pi(+)pi(-))/B(psi(2S) -> J/psi pi(+)pi(-)) = (5.4 +/- 1.1 +/- 0.2) x 10(-2), where the first uncertainty is statistical and the second is systematic.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of CP violation in the B-s(0)-> phi phi decay and search for the B-0 -> phi phi decay. J. High Energy Phys., 12(12), 155–34pp.
Abstract: A measurement of the time-dependent CP-violating asymmetry in Bs0 ->phi phi = 7 TeV in 2011, 8 TeV in 2012 and 13 TeV in 2015 and 2016, a signal yield of around 9000 Bs0 ->phi phi decays is obtained. The CP-violating phase phi sss over bar is measured to be -0.073 +/- 0.115(stat) +/- 0.027(syst) rad, under the assumption it is independent of the helicity of the phi phi decay. In addition, the CP-violating phases of the transverse polarisations under the assumption of CP conservation of the longitudinal phase are measured. The helicity-independent direct CP-violation parameter is also measured, and is found to be |lambda| = 0.99 +/- 0.05(stat) +/- 0.01(syst). In addition, T-odd triple-product asymmetries are measured. The results obtained are consistent with the hypothesis of CP conservation in b over bar -> s over bar ss over bar transitions. Finally, a limit on the branching fraction of the B-0 -> phi phi decay is determined to be Bmml:mfenced close=“)” open=(B0 ->phi phi 2.7x10(-8) at 90% confidence level.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). A search for Xi(++)(cc) -> D(+)pK(-)pi(+) decays. J. High Energy Phys., 10(10), 124–21pp.
Abstract: A search for the Xi(++)(cc) baryon through the Xi(++)(cc) -> D(+)pK(-)pi(+) decay is performed with a data sample corresponding to an integrated luminosity of 1.7 fb(-1) recorded by the LHCb experiment in pp collisions at a centre-of-mass energy of 13 TeV. No significant signal is observed in the mass range from the kinematic threshold of the decay to 3800 MeV/c(2). An upper limit is set on the ratio of branching fractions R = B(Xi(++)(cc) -> D(+)pK(-)pi(+))/B(Xi(++)(cc) -> A(c)(+) K- pi(+)pi(+)) with R < 1.7 (2.1) x 10(-2) at the 90% (95%) confidence level at the known mass of the Xi(++)(cc) state.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of the electron reconstruction efficiency at LHCb. J. Instrum., 14, P11023–20pp.
Abstract: The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb(-1) of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+ -> J/psi (e(+)e(-))K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%.
|