LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of the shape of the B-s(0) -> D-s*(-) mu(+) nu(mu) differential decay rate. J. High Energy Phys., 12(12), 144–32pp.
Abstract: The shape of the B-s(0) -> D-s*mu(+)nu(mu) differential decay rate is obtained as a function of the hadron recoil parameter using proton-proton collision data at a centreof-mass energy of 13TeV, corresponding to an integrated luminosity of 1.7 fb(-1) collected by the LHCb detector. The B-s(0) -> D-s*(-)mu(+)nu(mu) decay is reconstructed through the decays D-s*(-) up arrow D-s(-) gamma and D-s(-) -> K-K+pi(-). The differential decay rate is fitted with the CapriniLellouch-Neubert (CLN) and Boyd-Grinstein-Lebed (BGL) parametrisations of the form factors, and the relevant quantities for both are extracted.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of branching fraction ratios for B+ -> D*+D-K+, B+ -> D*-D+K+, and B-0 -> (D*-DK+)-K-0 decays. J. High Energy Phys., 12(12), 139–22pp.
Abstract: A measurement of four branching-fraction ratios for three-body decays of B mesons involving two open-charm hadrons in the final state is presented. Run 1 and Run 2 pp collision data are used, recorded by the LHCb experiment at centre-of-mass energies 7, 8, and 13 TeV and corresponding to an integrated luminosity of 9 fb(-1). The measured branching-fraction ratios are<disp-formula id=“Equa”><mml:mtable displaystyle=“true”><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D+D-K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D<overbar></mml:mover>0D0K+</mml:mfenced></mml:mfrac>=0.5170.0150.013 +/- 0.011,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D-D+K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D<overbar></mml:mover>0D0K+</mml:mfenced></mml:mfrac>=0.577 +/- 0.016 +/- 0.013 +/- 0.013,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mtable><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B0 -> D-D0K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B0 -> D-D0K+</mml:mfenced></mml:mfrac>=1.754 +/- 0.028 +/- 0.016 +/- 0.035,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D+D-K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D-D+K+</mml:mfenced></mml:mfrac>=0.907 +/- 0.033<mml:mo>+/- 0.014<mml:mo>,</mml:mtd></mml:mtr></mml:mtable></mml:mtd></mml:mtr></mml:mtable><graphic position=“anchor” xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:href=“13130202014428ArticleEqua.gif”></graphic></disp-formula><p id=“Par2”>where the first of the uncertainties is statistical, the second systematic, and the third is due to the uncertainties on the D-meson branching fractions. These are the most accurate measurements of these ratios to date.<fig id=“Figa” position=“anchor”><graphic position=“anchor” specific-use=“HTML” mime-subtype=“JPEG” xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:href=“MediaObjects/13130202014428FigaHTML.jpg” id=“MO1”></graphic
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). (U)pdated measurement of decay-time-dependent CP asymmetries in D-0 -> K+ K- and D-0 -> pi(+)pi(-) decays. Phys. Rev. D, 101(1), 012005–12pp.
Abstract: A search for decay-time-dependent charge-parity (CP) asymmetry in D-0 -> K+ K- and D-0 -> pi(+)pi(-) eff decays is performed at the LHCb experiment using proton-proton collision data recorded at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb(-1). The D-0 mesons are required to originate from semileptonic decays of b hadrons, such that the charge of the muon identifies the flavor of the neutral D meson at production. The asymmetries in the effective decay widths of D-0 and (D) over bar (0) mesons are determined to be A(Gamma)(K+ K-) = (-4.3 +/- 3.6 +/- 0.5) x 10(-4) and A(Gamma) (K+ K- ) = (2.2 +/- 7.0 +/- 0.8) x 10(-4), where the uncertainties are statistical and systematic, respectively. The results are consistent with CP symmetry and, when combined with previous LHCb results, yield A(Gamma) (K+ K-) = (-4.4 +/- 2.3 +/- 0.6) x 10(-4) and A(Gamma) (pi(+)pi(-))= (2.5 +/- 4.3 +/- 0.7) x 10(-4).
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Amplitude analysis of the B+ -> pi(+)pi(+)pi(-) decay. Phys. Rev. D, 101(1), 012006–46pp.
Abstract: The results of an amplitude analysis of the charmless three-body decay B+ -> pi(+)pi(+)pi(-) , in which CP-violation effects are taken into account, are reported. The analysis is based on a data sample corresponding to an integrated luminosity of 3 fb(-1) of pp collisions recorded with the LHCb detector. The most challenging aspect of the analysis is the description of the behavior of the pi(+)pi(-) S-wave contribution, which is achieved by using three complementary approaches based on the isobar model, the K-matrix formalism, and a quasi-model-independent procedure. Additional resonant contributions for all three methods are described using a common isobar model, and include the rho(770)(0), omega(782)(0) and rho(1450)(0) resonances in the pi(+)pi(-) P-wave, the f(2) (1270) resonance in the pi(+)pi D- -wave, and the rho(3) (1690)(0) resonance in the pi(+)pi(-) F-wave. Significant CP-violation effects are observed in both S- and D-waves, as well as in the interference between the S- and P-waves. The results from all three approaches agree and provide new insight into the dynamics and the origin of CP-violation effects in B+ -> pi(+)pi(+)pi(-) decays.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Determination of quantum numbers for several excited charmed mesons observed in B- -> D*(+)pi(-) pi(-) decays. Phys. Rev. D, 101(3), 032005–24pp.
Abstract: A four-body amplitude analysis of the B- -> D*(+)pi(-) pi(-) decay is performed, where fractions and relative phases of the various resonances contributing to the decay are measured. Several quasi-model-independent analyses are performed aimed at searching for the presence of new states and establishing the quantum numbers of previously observed charmed meson resonances. In particular the resonance parameters and quantum numbers are determined for the D-1 (2420), D-1 (2430), D-0 (2550), D-1* (2600), D-2 (2740) and D-3*(2750) states. The mixing between the D-1 (2420) and D-1 (2430) resonances is studied and the mixing parameters are measured. The dataset corresponds to an integrated luminosity of 4.7 fb(-1), collected in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV with the LHCb detector.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of |V-cb| with B-s(0) -> D-s(()*()-) mu(+)nu(mu) decays. Phys. Rev. D, 101(7), 072004–25pp.
Abstract: The element vertical bar V-cb vertical bar of the Cabibbo-Kobayashi-Maskawa matrix is measured using semileptonic B-s(0) decays produced in proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). Rates of B-s0 -> D-s(-) mu(+)nu(mu) and B-s0 -> D-s*(-) mu(+)nu(mu) decays are analyzed using hadronic form-factor parametrizations derived either by Caprini, Lellouch and Neubert (CLN) or by Boyd, Grinstein and Lebed (BGL). The measured values of vertical bar V-cb vertical bar are (41.4 +/- 0.6 +/- 0.9 +/- 1.2) x 10(-3) and (42.3 +/- 0.8 +/- 0.9 +/- 1.2) x 10(-3) in the CLN and BGL parametrization, respectively. The first uncertainty is statistical, the second systematic, and the third is due to the external inputs used in the measurement. These results are in agreement with those obtained from decays of B+ and B-0 mesons. They are the first determinations of vertical bar V-cb vertical bar at a hadron-collider experiment and the first using B-s(0) meson decays.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0. Phys. Rev. D, 102(1), 012011–15pp.
Abstract: A measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0 is performed using proton- proton – collision data corresponding to an integrated luminosity of 5 fb(-1) collected by the LHCb experiment between 2011 and 2016. The branching fraction is determined to be B(B-s(0) -> (KSKS0)-K-0) = [8.3 +/- 1.6(stat) +/- 0.9(syst) +/- 0.8(norm) +/- 0.3(f(s)/f(d))] x 10(-6), where the first uncertainty is statistical, the second is systematic, and the third and fourth are due to uncertainties on the branching fraction of the normalization mode B-0 -> phi K(S)(0 )and the ratio of hadronization fractions f(s)/f(d). This is the most precise measurement of this branching fraction to date. Furthermore, a measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0 is performed relative to that of the B-s(0) -> (KSKS0)-K-0 channel, and is found to be B(B-s(0) -> (KSKS0)-K-0)/B(B-s(0) -> (KSKS0)-K-0) = [7.5 +/- 3.1(stat) 0.5(syst) +/- 0.3(f(s)/f(d))1 x 10(-2).
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Search for CP violation and observation of P violation in Lambda(0)(b) -> p pi(-) pi(+) pi(-) decays. Phys. Rev. D, 102(5), 051101–12pp.
Abstract: A search for CP violation in the Lambda(0)(b) -> p pi(-) pi(+) pi(-) decay is performed using LHCb data corresponding to an integrated luminosity of 6.6 fb(-1) collected in pp collisions at center-of-mass energies of 7, 8 and 13 TeV. The analysis uses both triple product asymmetries and the unbinned energy test method. The highest significances of CP asymmetry are 2.9 standard deviations from triple product asymmetries and 3.0 standard deviations for the energy test method. Once the global p-value is considered, all results are consistent with no CP violation. Parity violation is observed at a significance of 5.5 standard deviations for the triple product asymmetry method and 5.3 standard deviations for the energy test method. The reported deviations are given in regions of phase space.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). First observation of the decay B-0 -> D-0(D)over-bar(0)K(+)pi(-). Phys. Rev. D, 102(5), 051102–11pp.
Abstract: The first observation of the decay B-0 -> D-0(D) over bar K-0(+)pi(-) is reported using proton-proton collision data corresponding to an integrated luminosity of 4.7 fb(-1) collected by the LHCb experiment in 2011, 2012 and 2016. The measurement is performed in the full kinematically allowed range of the decay outside of the D*(-) region. The ratio of the branching fraction relative to that of the control channel B-0 -> D-0<(DK+)-K-0 pi(-)+ is measured to be R = (14.2 +/- 1.1 +/- 1.0)%, where the first uncertainty is statistical and the second is systematic. The absolute branching fraction of B-0 -> D-0(D) over bar K-0(+)pi(- )decays is thus determined to be B(B-0 -> D-0(D) over bar K-0(+)pi(-)) = (3.50 +/- 0.27 +/- 0.26 +/- 0.30) x 10(-4), where the third uncertainty is due to the branching fraction of the control channel. This decay mode is expected to provide insights to spectroscopy and the charm-loop contributions in rare semileptonic decays.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). First branching fraction measurement of the suppressed decay Xi(0)(c) -> pi(-) Lambda(+)(c). Phys. Rev. D, 102(7), 071101–11pp.
Abstract: The Xi(0)(c) baryon is unstable and usually decays into charmless final states by the c -> sud transition. It can, however, also disintegrate into a pi(-) meson and a Lambda(+)(c) baryon via s quark decay or via cs -> dc weak scattering. The interplay between the latter two processes governs the size of the branching fraction B(Xi(0)(c) -> pi(-) Lambda(+)(c)), first measured here to be (0.55 +/- 0.02 +/- 0.18)%, where the first uncertainty is statistical and second systematic. This result is compatible with the larger of the theoretical predictions that connect models of hyperon decays using partially conserved axial currents and SU(3) symmetry with those involving the heavy-quark expansion and heavy-quark symmetry. In addition, the branching fraction of the normalization channel, B(Xi(+)(c) -> pK(-) pi(+)) = (1.135 +/- 0.002 +/- 0.387)% is measured.
|