|
Carlomagno, J. P., Gomez Dumm, D., Izzo Villafañe, M. F., Noguera, S., & Scoccola, N. N. (2022). Charged pseudoscalar and vector meson masses in strong magnetic fields in an extended NJL model. Phys. Rev. D, 106(9), 094035–17pp.
Abstract: The mass spectrum of pi(+) and rho(+) mesons in the presence of a static uniform magnetic field (B) over right arrow is studied within a two-flavor Nambu-Jona-Lasinio-like model. We improve previous calculations, taking into account the effect of Schwinger phases carried by quark propagators and using an expansion of meson fields in terms of the solutions of the corresponding equations of motion for nonzero B. It is shown that the meson polarization functions are diagonal in this basis. Our numerical results for the rho(+) meson spectrum are found to disfavor the existence of a meson condensate induced by the magnetic field. In the case of the pi(+) meson, pi-rho mixing effects are analyzed for the meson lowest-energy state. The predictions of the model are compared with available lattice QCD results.
|
|
|
Gomez Dumm, D., Izzo Villafañe, M. F., Noguera, S., Pagura, V. P., & Scoccola, N. N. (2017). Strong magnetic fields in nonlocal chiral quark models. Phys. Rev. D, 96(11), 114012–19pp.
Abstract: We study the behavior of strongly interacting matter under a uniform intense external magnetic field in the context of nonlocal extensions of the Polyakov-Nambu-Jona-Lasinio model. A detailed description of the formalism is presented, considering the cases of zero and finite temperature. In particular, we analyze the effect of the magnetic field on the chiral restoration and deconfinement transitions, which are found to occur at approximately the same critical temperatures. Our results show that these models offer a natural framework to account for the phenomenon of inverse magnetic catalysis found in lattice QCD calculations.
|
|