|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Izmaylov, A., Sorel, M., & Stamoulis, P. (2015). Neutrino oscillation physics potential of the T2K experiment. Prog. Theor. Exp. Phys., (4), 043C01–36pp.
Abstract: The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle theta(13) have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin(2) 2 theta(23), the octant of theta(23), and the mass hierarchy, in addition to the measurements of delta CP, sin(2) theta(23), and Delta m(32)(2), for various combinations of nu-mode and (nu) over bar -mode data-taking. With an exposure of 7.8 x 10(21) protons-on-target, T2K can achieve 1 sigma resolution of 0.050 (0.054) on sin(2) theta(23) and 0.040 (0.045) x 10(-3) eV(2) on Delta m(32)(2) for 100% (50%) neutrino beam mode running assuming sin(2) theta(23) = 0.5 and Delta m(32)(2) = 2.4 x 10(-3) eV(2). T2K will have sensitivity to the CP-violating phase delta(CP) at 90% C.L. or better over a significant range. For example, if sin(2) 2 theta(23) is maximal (i.e.theta(23) = 45 degrees) the range is -115 degrees < delta(CP) < -60 degrees for normal hierarchy and +50 degrees < delta(CP) < + 130 degrees for inverted hierarchy. When T2K data is combined with data from the NO nu A experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero delta CP is substantially increased compared to if each experiment is analyzed alone.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2019). Measurement of the muon neutrino charged-current cross sections on water, hydrocarbon and iron, and their ratios, with the T2K on-axis detectors. Prog. Theor. Exp. Phys., (9), 093C02–30pp.
Abstract: We report a measurement of the flux-integrated v(mu) charged-current cross sections on water, hydrocarbon, and iron in the T2K on-axis neutrino beam with a mean neutrino energy of 1.5 GeV. The measured cross sections on water, hydrocarbon, and iron are sigma(H2O)(CC) = (0.840 +/- 0.010(stat.)(0.08)(+0.10)(syst.)) x 10 (38) cm(2)/nucleon, sigma(CH)(CC) = (0.817 +/- 0.007(stat.)(0.08)(+0.11)(syst.)) x 10 (38) cm(2)/nucleon, and sigma(Fe)(CC) = (0.859 +/- 0.003(stat.)(0.10)(+0.12)(syst.)) x 10 (38) cm(2)/nucleon, respectively, for a restricted phase space of induced muons: theta(mu) < 45 degrees and p(mu) >0.4 GeV/c in the laboratory frame. The measured cross section ratios are sigma(H2O)(CC)/sigma(CH)(CC) = 1.028 +/- 0.016(stat.) +/- 0.053(syst.), sigma(Fe)(CC)/sigma(H2O)(CC) = 1.023 +/- 0.012(stat.) +/- 0.058(syst.), and sigma(Fe)(CC)/sigma(CH)(CC) = 1.049 +/- 0.010(stat.) +/- 0.043(syst.). These results, with an unprecedented precision for the measurements of neutrino cross sections on water in the studied energy region, show good agreement with the current neutrino interaction models used in the T2K oscillation analyses.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Gomez-Cadenas, J. J., Izmaylov, A., Monfregola, L., et al. (2013). Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-Axis Beam. Phys. Rev. Lett., 111(21), 211803–7pp.
Abstract: The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01 x 10(20) protons on target. In the absence of neutrino oscillations, 205 +/- 17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin(2) (theta(23)) = 0.514 +/- 0.082 and mass splitting vertical bar Delta m(32)(2)vertical bar = 2.44(-0.15)(+0.17) x 10(-3) eV(2)/c(4). Our result corresponds to the maximal oscillation disappearance probability.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Gomez-Cadenas, J. J., Izmaylov, A., Monfregola, L., et al. (2014). Observation of Electron Neutrino Appearance in a Muon Neutrino Beam. Phys. Rev. Lett., 112(6), 061802–8pp.
Abstract: The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3 sigma when compared to 4.92 +/- 0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles theta(12), theta(23), theta(13), a mass difference vertical bar Delta m(32)(2)vertical bar and a CP violating phase delta(CP). In this neutrino oscillation scenario, assuming vertical bar Delta m(32)(2)vertical bar = 2.4 x 10(-3) eV(2), sin theta(2)(23) = 0.5, and vertical bar Delta m(32)(2)vertical bar > 0 (vertical bar Delta m(32)(2)vertical bar < 0), a best- fit value of sin2 theta(2)(13) = 0.140(- 0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at delta(CP) = 0. When combining the result with the current best knowledge of oscillation parameters including the world average value of theta(13) from reactor experiments, some values of delta(CP) are disfavored at the 90% C. L.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Izmaylov, A., Monfregola, L., Sorel, M., et al. (2014). Precise Measurement of the Neutrino Mixing Parameter theta(23) from Muon Neutrino Disappearance in an Off-Axis Beam. Phys. Rev. Lett., 112(18), 181801–8pp.
Abstract: New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta(23). Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10(20) protons on target, T2K has fit the energy-dependent nu(mu) oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(theta(23)) is 0.514(-0.056)(+0.055) (0.511 +/- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m(32)(2) = (2.51 +/- 0.10) x 10(-3) eV(2)/c(4) (inverted hierarchy: Delta m(13)(2) = (2.48 +/- 0.10) x 10(-3) eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Izmaylov, A., Sorel, M., & Stamoulis, P. (2014). Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector. Phys. Rev. Lett., 113(24), 241803–7pp.
Abstract: The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies similar to 1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged nu(e) charged current cross section on carbon is measured to be <sigma >(phi) = 1.11 +/- 0.10(stat) +/- 0.18(syst) x 10(-38) cm(2)/nucleon. The differential and total cross- section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 x 10(-38) cm(2)/nucleon and the GENIE prediction is 1.08 x 10(-38) cm(2)/nucleon. The total nu(e) charged current cross-section result is also in agreement with data from the Gargamelle experiment.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Sorel, M., & Stamoulis, P. (2016). Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam. Phys. Rev. Lett., 116(18), 181801–8pp.
Abstract: T2K reports its first measurements of the parameters governing the disappearance of (nu) over bar μin an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic (nu) over bar μbeam, produced with a peak energy of 0.6 GeVat J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the (nu) over bar μsurvival probability is expected to be minimal. Using a data set corresponding to 4.01 x 10(20) protons on target, 34 fully contained mu-like events were observed. The best-fit oscillation parameters are sin(2) ((theta) over bar (23)) = 0.45 and vertical bar Delta(m) over bar (2)(32)vertical bar = 2.51 x 10(-3) eV(2) with 68% confidence intervals of 0.38-0.64 and 2.26-2.80 x 10(-3) eV(2), respectively. These results are in agreement with existing antineutrino parameter measurements and also with the nu(mu) disappearance parameters measured by T2K.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Novella, P., Izmaylov, A., Sorel, M., & Stamoulis, P. (2016). Measurement of Coherent pi(+) Production in Low Energy Neutrino-Carbon Scattering. Phys. Rev. Lett., 117(9), 192501–7pp.
Abstract: We report the first measurement of the flux-averaged cross section for charged current coherent pi(+) production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al. models.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Novella, P., & Sorel, M. (2017). Combined Analysis of Neutrino and Antineutrino Oscillations at T2K. Phys. Rev. Lett., 118(15), 151801–9pp.
Abstract: T2K reports its first results in the search for CP violation in neutrino oscillations using appearance and disappearance channels for neutrino-and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482 x 10(20) protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 mu-like events, and 7.471 x 10(20) protons on target in antineutrino mode, which yielded 4 e-like and 66 mu-like events. Reactor measurements of sin(2) 2 theta(13) have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase delta(CP) spans the range (-3.13,-0.39) for normal mass ordering. The CP conservation hypothesis (delta(CP) = 0, pi) is excluded at 90% C.L.
|
|
|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2018). Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 x 10(21) Protons on Target. Phys. Rev. Lett., 121(17), 171802–9pp.
Abstract: The T2K experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and antineutrino beams. With an exposure of 14.7(7.6) x 10(20) protons on target in the neutrino (antineutrino) mode, 89 nu(e) candidates and seven anti-nu(e) candidates are observed, while 67.5 and 9.0 are expected for delta(CP) = 0 and normal mass ordering. The obtained 2 sigma confidence interval for the CP-violating phase, delta(CP), does not include the CP-conserving cases (delta(CP) = 0, pi). The best-fit values of other parameters are sin(2) theta(23) = 0.526(-0.036)(+0.032) and Delta m(32)(2) = 2.463(-0.070)(+0.071) x 10(-3) eV(2)/c(4).
|
|