|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Izmaylov, A., Sorel, M., & Stamoulis, P. (2016). Upper bound on neutrino mass based on T2K neutrino timing measurements. Phys. Rev. D, 93(1), 012006–15pp.
Abstract: The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV/c(2) range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be m(v)(2) < 5.6 MeV2/c(4).
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., & Novella, P. (2017). Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of nu(e) interactions at the far detector. Phys. Rev. D, 96(9), 092006–49pp.
Abstract: The T2K experiment reports an updated analysis of neutrino and antineutrino oscillations in appearance and disappearance channels. A sample of electron neutrino candidates at Super-Kamiokande in which a pion decay has been tagged is added to the four single-ring samples used in previous T2K oscillation analyses. Through combined analyses of these five samples, simultaneous measurements of four oscillation parameters, vertical bar Delta m(32)(2)vertical bar, sin(2) theta(23), sin(2) theta(13), and delta(CP) and of the mass ordering are made. A set of studies of simulated data indicates that the sensitivity to the oscillation parameters is not limited by neutrino interaction model uncertainty. Multiple oscillation analyses are performed, and frequentist and Bayesian intervals are presented for combinations of the oscillation parameters with and without the inclusion of reactor constraints on sin(2) theta(13). When combined with reactor measurements, the hypothesis of CP conservation (delta(CP) = 0 or pi) is excluded at 90% confidence level. The 90% confidence region for delta(CP) is [-2.95, -0.44] ([-1.47, -1.27]) for normal (inverted) ordering. The central values and 68% confidence intervals for the other oscillation parameters for normal (inverted) ordering are Delta m(32)(2) = 2.54 +/- 0.08(2.51 +/- 0.08) x 10(-3) eV(2)/c(4) and sin(2) theta(23) = 0.55(-0.09)(+0.005) (0.55(-0.08)(+0.05)), compatible with maximal mixing. In the Bayesian analysis, the data weakly prefer normal ordering (Bayes factor 3.7) and the upper octant for sin(2) theta(23) (Bayes factor 2.4).
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., & Novella, P. (2018). First measurement of the nu(mu) charged-current cross section on a water target without pions in the final state. Phys. Rev. D, 97(1), 012001–16pp.
Abstract: This paper reports the first differential measurement of the charged-current interaction cross section of nu(mu) on water with no pions in the final state. This flux-averaged measurement has been made using the T2K experiment's off-axis near detector, and is reported in doubly differential bins of muon momentum and angle. The flux-averaged total cross section in a restricted region of phase space was found to be sigma = (0.95 +/- 0.08(stat) +/- 0.06(det syst) +/- 0.04(model syst) +/- 0.08(flux)) x 10(-38) cm(2)/n.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Novella, P., & Sorel, M. (2017). Combined Analysis of Neutrino and Antineutrino Oscillations at T2K. Phys. Rev. Lett., 118(15), 151801–9pp.
Abstract: T2K reports its first results in the search for CP violation in neutrino oscillations using appearance and disappearance channels for neutrino-and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482 x 10(20) protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 mu-like events, and 7.471 x 10(20) protons on target in antineutrino mode, which yielded 4 e-like and 66 mu-like events. Reactor measurements of sin(2) 2 theta(13) have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase delta(CP) spans the range (-3.13,-0.39) for normal mass ordering. The CP conservation hypothesis (delta(CP) = 0, pi) is excluded at 90% C.L.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Novella, P., & Sorel, M. (2017). Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 x 10(21) protons on target. Phys. Rev. D, 96(1), 011102–9pp.
Abstract: We report measurements by the T2K experiment of the parameters theta(23) and Delta m(32)(2) governing the disappearance of muon neutrinos and antineutrinos in the three-flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. Using 7.482 x 10(20) POT in neutrino running mode and 7.471 x 10(20) POT in antineutrino mode, T2K obtained sin(2) (theta(23)) = 0.51(-0.07)(+0.08) and Delta (m) over bar (2)(32) = (+0.15)(-2.53) -0.13 x 10(-3) eV(2)/c(4) for neutrinos, and sin(2) ((theta) over bar (23)) = 0.42(-0.07)(+0.25) and Delta(m) over bar (2)(32) = 2.55(-0.27)(+0.33) x 10(-3) eV(2)/c(4) for antineutrinos (assuming normal mass ordering). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Novella, P., Sorel, M., & Stamoulis, P. (2017). First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector. Phys. Rev. D, 95(1), 012010–11pp.
Abstract: The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies similar to 0.8 GeV. The differential measurements are presented as a function of the muon and pion kinematics, in the restricted phase space defined by p(pi+) > 200 MeV/c, p(mu) > 200 MeV/c, cos(theta(pi+)) > 0.3 and cos(theta(mu)) > 0.3. The total flux integrated nu(mu) charged current single positive pion production cross section on water in the restricted phase space is measured to be <sigma >(phi) = 4.25 +/- 0.48(stat) +/- 1.56(syst) x 10(-40) cm(2)/nucleon. The total cross section is consistent with the NEUT prediction (5.03 x 10(-40) cm(2)/nucleon) and 2 sigma lower than the GENIE prediction (7.68 x 10(-40) cm(2)/nucleon). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but overestimates the overall cross section normalization.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Novella, P., Sorel, M., & Stamoulis, P. (2017). Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline. Phys. Rev. D, 95(11), 111101–9pp.
Abstract: A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 10(20) at the GeV scale.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Novella, P., Sorel, M., & Stamoulis, P. (2018). Measurement of the single pi(0) production rate in neutral current neutrino interactions on water. Phys. Rev. D, 97(3), 032002–13pp.
Abstract: The single pi(0) production rate in neutral current neutrino interactions on water in a neutrino beam with a peak neutrino energy of 0.6 GeV has been measured using the empty set, one of the subdetectors of the T2K near detector. The production rate was measured for data taking periods when the Pempty setD contained water (2.64 x 10(20) protons-on-target) and also periods without water (3.49 x 10(20) protons-on-target). A measurement of the neutral current single pi(0) production rate on water is made using appropriate subtraction of the production rate with water in from the rate with water out of the target region. The subtraction analysis yields 106 +/- 41 +/- 69 signal events where the uncertainties are statistical (stat.) and systematic (sys.) respectively. This is consistent with the prediction of 157 events from the nominal simulation. The measured to expected ratio is 0.68 +/- 0.26(stat) +/- 0.44(sys) +/- 0.12(flux). The nominal simulation uses a flux integrated cross section of 7.63 x 10(-39) cm(2) per nucleon with an average neutrino interaction energy of 1.3 GeV.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Sorel, M., & Stamoulis, P. (2016). Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector. Phys. Rev. D, 93(7), 072002–23pp.
Abstract: We report a measurement of the nu(mu)-nucleus inclusive charged-current cross section (= sigma(cc)) on iron using data from the INGRID detector exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0 degrees to 1.1 degrees. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be sigma(cc) (1.1 GeV) = 1.10 +/- 0.15 (10(-38) cm(2)/nucleon), sigma(cc) (2.0 GeV) = 2.07 +/- 0.27 (10(-38) cm(2)/nucleon), and sigma(cc) (3.3 GeV) = 2.29 +/- 0.45 (10(-38) cm(2)/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Izmaylov, A., Sorel, M., & Stamoulis, P. (2016). Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam. Phys. Rev. Lett., 116(18), 181801–8pp.
Abstract: T2K reports its first measurements of the parameters governing the disappearance of (nu) over bar μin an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic (nu) over bar μbeam, produced with a peak energy of 0.6 GeVat J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the (nu) over bar μsurvival probability is expected to be minimal. Using a data set corresponding to 4.01 x 10(20) protons on target, 34 fully contained mu-like events were observed. The best-fit oscillation parameters are sin(2) ((theta) over bar (23)) = 0.45 and vertical bar Delta(m) over bar (2)(32)vertical bar = 2.51 x 10(-3) eV(2) with 68% confidence intervals of 0.38-0.64 and 2.26-2.80 x 10(-3) eV(2), respectively. These results are in agreement with existing antineutrino parameter measurements and also with the nu(mu) disappearance parameters measured by T2K.
|
|