|
Celis, A., Ilisie, V., & Pich, A. (2013). LHC constraints on two-Higgs doublet models. J. High Energy Phys., 07(7), 053–44pp.
Abstract: A new Higgs-like boson with mass around 126 GeV has recently been discovered at the LHC. The available data on this new particle is analyzed within the context of two-Higgs doublet models without tree-level flavour-changing neutral currents. Keeping the generic Yukawa structure of the Aligned Two-Higgs Doublet Model framework, we study the implications of the LHC data on the allowed scalar spectrum. We analyze both the CP-violating and CP-conserving cases, and a few particular limits with a reduced number of free parameters, such as the usual models based on discrete Z(2) symmetries.
|
|
|
Celis, A., Ilisie, V., & Pich, A. (2013). Towards a general analysis of LHC data within two-Higgs-doublet models. J. High Energy Phys., 12(12), 095–32pp.
Abstract: The data accumulated so far confirm the Higgs-like nature of the new boson discovered at the LHC. The Standard Model Higgs hypothesis is compatible with the collider results and no significant deviations from the Standard Model have been observed neither in the flavour sector nor in electroweak precision observables. We update the LHC and Tevatron constraints on CP-conserving two-Higgs-doublet models without tree-level flavour-changing neutral currents. While the relative sign between the top Yukawa and the gauge coupling of the 126 GeV Higgs is found be the same as in the SM, at 90% CL, there is a sign degeneracy in the determination of its bottom and tau Yukawa couplings. This results in several disjoint allowed regions in the parameter space. We show how generic sum rules governing the scalar couplings determine the properties of the additional Higgs bosons in the different allowed regions. The role of electroweak precision observables, low-energy flavour constraints and LHC searches for additional scalars to further restrict the available parameter space is also discussed.
|
|
|
Ilisie, V. (2015). New Barr-Zee contributions to (g-2)(mu) in two-Higgs-doublet models. J. High Energy Phys., 04(4), 077–27pp.
Abstract: We study the contribution of new sets of two-loop Barr-Zee type diagrams to the anomalous magnetic moment of the muon within the two-Higgs-doublet model framework. We show that some of these contributions can be quite sizeable for a large region of the parameter space and can significantly reduce, and in some cases even explain, the discrepancy between the theoretical prediction and the experimentally measured value of this observable. Analytical expressions are given for all the calculations performed in this work.
|
|
|
Ilisie, V., & Pich, A. (2014). Low-mass fermiophobic charged Higgs phenomenology in two-Higgs-doublet models. J. High Energy Phys., 09(9), 089–32pp.
Abstract: After the recent discovery of a Higgs-like boson, the possibility of an enlarged scalar sector arises as a natural question. Experimental searches for charged scalars have been already performed with negative results. We analyze the phenomenology associated with a fermiophobic charged Higgs (it does not couple to fermions at tree level), in two-Higgs-doublet models. All present experimental bounds are evaded trivially in this case, and one needs to consider other decay and production channels. We study the associated production of a charged Higgs with either a W or a neutral scalar boson, and the relevant decays for a light fermiophobic charged Higgs. The interesting features of this scenario should result encouraging for the LHC collaborations to perform searches for such a particle.
|
|
|
Ilisie, V., & Pich, A. (2012). QCD exotics versus a standard model Higgs boson. Phys. Rev. D, 86(3), 033001–8pp.
Abstract: The present collider data put severe constraints on any type of new strongly interacting particle coupling to the Higgs boson. We analyze the phenomenological limits on exotic quarks belonging to nontriplet SU(3)(C) representations and their implications on Higgs searches. The discovery of the standard model Higgs, in the experimentally allowed mass range, would exclude the presence of exotic quarks coupling to it. Thus, such QCD particles could only exist provided that their masses do not originate in the SM Higgs mechanism.
|
|