Gonzalez, M., Hirsch, M., & Kovalenko, S. G. (2018). Neutrinoless double beta decay and QCD running at low energy scales. Phys. Rev. D, 97(11), 115005–6pp.
Abstract: There is a common belief that the main uncertainties in the theoretical analysis of neutrinoless double beta (0 nu beta beta) decay originate from the nuclear matrix elements. Here, we uncover another previously overlooked source of potentially large uncertainties stemming from nonperturbative QCD effects. Recently perturbative QCD corrections have been calculated for all dimension 6 and 9 effective operators describing 0 nu beta beta-decay and their importance for a reliable treatment of 0 nu beta beta-decay has been demonstrated. However, these perturbative results are valid at energy scales above similar to 1 GeV, while the typical 0 nu beta beta scale is about similar to 100 MeV. In view of this fact we examine the possibility of extrapolating the perturbative results towards sub-GeV nonperturbative scales on the basis of the QCD coupling constant “freezing” behavior using background perturbation theory. Our analysis suggests that such an infrared extrapolation does modify the perturbative results for both short-range and long-range mechanisms of 0 nu beta beta-decay in general only moderately. We also discuss that the tensor circle times tensor effective operator cannot appear alone in the low energy limit of any renormalizable high-scale model and then demonstrate that all five linearly independent combinations of the scalar and tensor operators, which can appear in renormalizable models, are infrared stable.
|
Helo, J. C., Hirsch, M., & Ota, T. (2018). Proton decay and light sterile neutrinos. J. High Energy Phys., 06(6), 047–15pp.
Abstract: Within the standard model, non-renormalizable operators at dimension six (d = 6) violate baryon and lepton number by one unit and thus lead to proton decay. Here, we point out that the proton decay mode with a charged pion and missing energy can be a characteristic signature of d = 6 operators containing a light sterile neutrino, if it is not accompanied by the standard pi(0)e(+) final state. We discuss this effect first at the level of effective operators and then provide a concrete model with new physics at the TeV scale, in which the lightness of the active neutrinos and the stability of the proton are related.
|
Hirsch, M., Srivastava, R., & Valle, J. W. F. (2018). Can one ever prove that neutrinos are Dirac particles? Phys. Lett. B, 781, 302–305.
Abstract: According to the “Black Box” theorem the experimental confirmation of neutrinoless double beta decay (0 nu 2 beta) would imply that at least one of the neutrinos is a Majorana particle. However, a null 0 nu 2 beta signal cannot decide the nature of neutrinos, as it can be suppressed even for Majorana neutrinos. In this letter we argue that if the null 0 nu 2 beta decay signal is accompanied by a 0 nu 2 beta quadruple beta decay signal, then at least one neutrino should be a Dirac particle. This argument holds irrespective of the underlying processes leading to such decays.
|
Helo, J. C., Hirsch, M., & Wang, Z. S. (2018). Heavy neutral fermions at the high-luminosity LHC. J. High Energy Phys., 07(7), 056–23pp.
Abstract: Long-lived light particles (LLLPs) appear in many extensions of the standard model. LLLPs are usually motivated by the observed small neutrino masses, by dark matter or both. Typical examples for fermionic LLLPs (a.k.a. heavy neutral fermions, HNFs) are sterile neutrinos or the lightest neutralino in R-parity violating supersymmetry. The high luminosity LHC is expected to deliver up to 3/ab of data. Searches for LLLPs in dedicated experiments at the LHC could then probe the parameter space of LLLP models with unprecedented sensitivity. Here, we compare the prospects of several recent experimental proposals, FASER, CODEX-b and MATHUSLA, to search for HNFs and discuss their relative merits.s
|
Fonseca, R. M., & Hirsch, M. (2018). Delta L >= 4 lepton number violating processes. Phys. Rev. D, 98(1), 015035–12pp.
Abstract: We discuss the experimental prospects for observing processes which violate lepton number (Delta L) in four units ( or more). First, we reconsider neutrinoless quadruple beta decay, deriving a model independent and very conservative lower limit on its half- life of the order of 10(41) ys for Nd-150. This renders quadruple beta decay unobservable for any feasible experiment. We then turn to a more general discussion of different possible low-energy processes with values Delta L >= 4. A simple operator analysis leads to rather pessimistic conclusions about the observability at low-energy experiments in all cases we study. However, the situation looks much brighter for accelerator experiments. For two example models with Delta L = 4 and another one with Delta L = 5, we show how the LHC or a hypothetical future pp collider, such as the FCC, could probe multilepton number violating operators at the TeV scale.
|
Cottin, G., Helo, J. C., & Hirsch, M. (2018). Displaced vertices as probes of sterile neutrino mixing at the LHC. Phys. Rev. D, 98(3), 035012–6pp.
Abstract: We investigate the reach at the LHC to probe light sterile neutrinos with displaced vertices. We focus on sterile neutrinos N with masses m(N) similar to (5-30) GeV that are produced in rare decays of the standard model gauge bosons and decay inside the inner trackers of the LHC detectors. With a strategy that triggers on the prompt lepton accompanying the N displaced vertex and considers charged tracks associated with it, we show that the 13 TeV LHC with 3000/fb is able to probe active-sterile neutrino mixings down to vertical bar V-lN vertical bar(2) approximate to 10(-9), with l = e, mu, which is an improvement of up to 4 orders of magnitude when comparing with current experimental limits from trileptons and proposed lepton-jets searches. In the case when tau mixing is present, mixing angles as low as vertical bar V-tau N vertical bar(2) approximate to 10(-8) can be accessed.
|
Cepedello, R., Fonseca, R. M., & Hirsch, M. (2018). Systematic classification of three-loop realizations of the Weinberg operator. J. High Energy Phys., 10(10), 197–34pp.
Abstract: We study systematically the decomposition of the Weinberg operator at three-loop order. There are more than four thousand connected topologies. However, the vast majority of these are infinite corrections to lower order neutrino mass diagrams and only a very small percentage yields models for which the three-loop diagrams are the leading order contribution to the neutrino mass matrix. We identify 73 topologies that can lead to genuine three-loop models with fermions and scalars, i.e. models for which lower order diagrams are automatically absent without the need to invoke additional symmetries. The 73 genuine topologies can be divided into two sub-classes: normal genuine ones (44 cases) and special genuine topologies (29 cases). The latter are a special class of topologies, which can lead to genuine diagrams only for very specific choices of fields. The genuine topologies generate 374 diagrams in the weak basis, which can be reduced to only 30 distinct diagrams in the mass eigenstate basis. We also discuss how all the mass eigenstate diagrams can be described in terms of only five master integrals. We present some concrete models and for two of them we give numerical estimates for the typical size of neutrino masses they generate. Our results can be readily applied to construct other d = 5 neutrino mass models with three loops.
|
Anamiati, G., Castillo-Felisola, O., Fonseca, R. M., Helo, J. C., & Hirsch, M. (2018). High-dimensional neutrino masses. J. High Energy Phys., 12(12), 066–26pp.
Abstract: For Majorana neutrino masses the lowest dimensional operator possible is the Weinberg operator at d = 5. Here we discuss the possibility that neutrino masses originate from higher dimensional operators. Specifically, we consider all tree-level decompositions of the d = 9, d = 11 and d = 13 neutrino mass operators. With renormalizable interactions only, we find 18 topologies and 66 diagrams for d = 9, and 92 topologies plus 504 diagrams at the d = 11 level. At d = 13 there are already 576 topologies and 4199 diagrams. However, among all these there are only very few genuine neutrino mass models: At d = (9, 11, 13) we find only (2,2,2) genuine diagrams and a total of (2,2,6) models. Here, a model is considered genuine at level d if it automatically forbids lower order neutrino masses without the use of additional symmetries. We also briefly discuss how neutrino masses and angles can be easily fitted in these high-dimensional models.
|
Fonseca, R. M., & Hirsch, M. (2017). Gauge vectors and double beta decay. Phys. Rev. D, 95(3), 035033–14pp.
Abstract: We discuss contributions to neutrinoless double beta (0 nu beta beta) decay involving vector bosons. The starting point is a list of all possible vector representations that may contribute to 0 nu beta beta decay via d = 9 or d = 11 operators at tree level. We then identify gauge groups which contain these vectors in the adjoint representation. Even though the complete list of vector fields that can contribute to 0 nu beta beta up to d = 11 is large (a total of 46 vectors), only a few of them can be gauge bosons of phenomenologically realistic groups. These latter cases are discussed in some more detail, and lower (upper) limits on gauge boson masses (mixing angles) are derived from the absence of 0 nu beta beta decay.
|
Arbelaez, C., Hirsch, M., & Restrepo, D. (2017). Fermionic triplet dark matter in an SO(10)-inspired left-right model. Phys. Rev. D, 95(9), 095034–9pp.
Abstract: We study a left right (LR) extension of the Standard Model (SM) where the Dark Matter(DM) candidate is composed of a set of fermionic Majorana triplets. The DM is stabilized by a remnant Z(2) symmetry from the breaking of the LR group to the SM. Two simple scenarios where the DM particles plus a certain set of extra fields lead to gauge coupling unification with a low LR scale are explored. The constraints from relic density and predictions for direct detection are discussed for both scenarios. The first scenario with a SUd(2)(R) vectorlike fermion triplet contains a DM candidate which is almost unconstrained by current direct detection experiments. The second scenario, with an additional SU(2)R triplet, opens up a scalar portal leading to direct detection constraints which are similar to collider limits for right gauge bosons. The DM parameter space consistent with phenomenological requirements can also lead to successful gauge coupling unification in a SO(10) setup.
|