Campos, F., Eboli, O. J. P., Magro, M. B., Porod, W., Restrepo, D., Das, S. P., et al. (2012). Probing neutralino properties in minimal supergravity with bilinear R-parity violation. Phys. Rev. D, 86(7), 075001–8pp.
Abstract: Supersymmetric models with bilinear R-parity violation can account for the observed neutrino masses and mixing parameters indicated by neutrino oscillation data. We consider minimal supergravity versions of bilinear R-parity violation where the lightest supersymmetric particle is a neutralino. This is unstable, with a large enough decay length to be detected at the CERN Large Hadron Collider. We analyze the Large Hadron Collider potential to determine the lightest supersymmetric particle properties, such as mass, lifetime and branching ratios, and discuss their relation to neutrino properties.
|
de Campos, F., Eboli, O. J. P., Hirsch, M., Magro, M. B., Porod, W., Restrepo, D., et al. (2010). Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider. Phys. Rev. D, 82(7), 075002–8pp.
Abstract: The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
|
Basso, L., Belyaev, A., Chowdhury, D., Hirsch, M., Khalil, S., Moretti, S., et al. (2013). Proposal for generalised supersymmetry Les Houches Accord for see-saw models and PDG numbering scheme. Comput. Phys. Commun., 184(3), 698–719.
Abstract: The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. In addition, we generalise the PDG numbering scheme to reflect the properties of the particles. (c) 2012 Elsevier B.V. All rights reserved.
|
Helo, J. C., Hirsch, M., & Ota, T. (2018). Proton decay and light sterile neutrinos. J. High Energy Phys., 06(6), 047–15pp.
Abstract: Within the standard model, non-renormalizable operators at dimension six (d = 6) violate baryon and lepton number by one unit and thus lead to proton decay. Here, we point out that the proton decay mode with a charged pion and missing energy can be a characteristic signature of d = 6 operators containing a light sterile neutrino, if it is not accompanied by the standard pi(0)e(+) final state. We discuss this effect first at the level of effective operators and then provide a concrete model with new physics at the TeV scale, in which the lightness of the active neutrinos and the stability of the proton are related.
|
Helo, J. C., Hirsch, M., & Ota, T. (2019). Proton decay at one loop. Phys. Rev. D, 99(9), 095021–14pp.
Abstract: Proton decay is usually discussed in the context of grand unified theories. However, as is well known, in the standard model effective theory proton decay appears in the form of higher-dimensional non-renormalizable operators. Here, we study systematically the one-loop decomposition of the d = 6 B + L violating operators. We exhaustively list the possible one-loop ultraviolet completions of these operators and discuss that, in general, two distinct classes of models appear. Models in the first class need an additional symmetry in order to avoid tree-level proton decay. These models necessarily contain a neutral particle, which could act as a dark matter candidate. For models in the second class the loop contribution dominates automatically over the tree-level proton decay, without the need for additional symmetries. We also discuss possible phenomenology of two example models, one from each class, and their possible connections to neutrino masses, LHC searches and dark matter.
|
Arbelaez, C., Gonzalez, M., Hirsch, M., & Kovalenko, S. G. (2016). QCD corrections and long-range mechanisms of neutrinoless double beta decay. Phys. Rev. D, 94(9), 096014–5pp.
Abstract: Recently it has been demonstrated that QCD corrections are numerically important for short-range mechanisms (SRM) of neutrinoless double beta decay (0 nu beta beta) mediated by heavy particle exchange. This is due to the effect of color mismatch for certain effective operators, which leads to mixing between different operators with vastly different nuclear matrix elements (NMEs). In this note we analyze the QCD corrections for long-range mechanisms (LRM), due to diagrams with light-neutrino exchange between a Standard Model (V-A)chi(V-A) and a beyond the SM lepton number violating vertex. We argue that in contrast to the SRM in the LRM case, there is no operator mixing from color-mismatched operators. This is due to a combined effect of the nuclear short-range correlations and color invariance. As a result, the QCD corrections to the LRM amount to an effect no more than 60%, depending on the operator in question. Although less crucial, taken into account QCD running makes theoretical predictions for 0 nu beta beta-decay more robust also for LRM diagrams. We derive the current experimental constraints on the Wilson coefficients for all LRM effective operators.
|
Gonzalez, M., Kovalenko, S. G., & Hirsch, M. (2016). QCD running in neutrinoless double beta decay: Short-range mechanisms. Phys. Rev. D, 93(1), 013017–11pp.
Abstract: The decay rate of neutrinoless double beta (0 nu beta beta) decay contains terms from heavy particle exchange, which lead to dimension-9 (d = 9) six fermion operators at low energies. Limits on the coefficients of these operators have been derived previously neglecting the running of the operators between the high scale, where they are generated, and the energy scale of 0 nu beta beta decay, where they are measured. Here we calculate the leading-order QCD corrections to all possible d = 9 operators contributing to the 0 nu beta beta amplitude and use renormalization group running to calculate 1-loop improved limits. Numerically, QCD running dramatically changes some limits by factors of the order of or larger than typical uncertainties in nuclear matrix element calculations. For some specific cases, operator mixing in the running changes limits even by up to 3 orders of magnitude. Our results can be straightforwardly combined with new experimental limits or improved nuclear matrix element calculations to rederive updated limits on all short-range contributions to 0 nu beta beta decay.
|
Arbelaez, C., Gonzalez, M., Kovalenko, S. G., & Hirsch, M. (2017). QCD-improved limits from neutrinoless double beta decay. Phys. Rev. D, 96(1), 015010–12pp.
Abstract: We analyze the impact of QCD corrections on limits derived from neutrinoless double beta decay (0 nu beta beta ). As demonstrated previously, the effect of the color mismatch arising from loops with gluons linking the quarks from different color-singlet currents participating in the effective operators has a dramatic impact on the predictions for some particular Wilson coefficients. Here, we consider all possible contributions from heavy particle exchange, i.e. the so-called short-range mechanism of 0 nu beta beta decay. All high-scale models (HSM) in this class match at some scale around a similar to few TeV with the corresponding effective theory, containing a certain set of effective dimension-9 operators. Many of these HSM receive contributions from more than one of the basic operators and we calculate limits on these models using the latest experimental data. We also show with one nontrivial example, how to derive limits on more complicated models, in which many different Feynman diagrams contribute to 0 nu beta beta decay, using our general method.
|
Anamiati, G., Fonseca, R. M., & Hirsch, M. (2018). Quasi-Dirac neutrino oscillations. Phys. Rev. D, 97(9), 095008–16pp.
Abstract: Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
|
Anamiati, G., De Romeri, V., Hirsch, M., Ternes, C. A., & Tortola, M. (2019). Quasi-Dirac neutrino oscillations at DUNE and JUNO. Phys. Rev. D, 100(3), 035032–12pp.
Abstract: Quasi-Dirac neutrinos are obtained when the Lagrangian density of a neutrino mass model contains both Dirac and Majorana mass terms, and the Majorana terms are sufficiently small. This type of neutrino introduces new mixing angles and mass splittings into the Hamiltonian, which will modify the standard neutrino oscillation probabilities. In this paper, we focus on the case where the new mass splittings are too small to be measured, but new angles and phases are present. We perform a sensitivity study for this scenario for the upcoming experiments DUNE and JUNO, finding that they will improve current bounds on the relevant parameters. Finally, we also explore the discovery potential of both experiments, assuming that neutrinos are indeed quasi-Dirac particles.
|