Cottin, G., Helo, J. C., & Hirsch, M. (2018). Searches for light sterile neutrinos with multitrack displaced vertices. Phys. Rev. D, 97(5), 055025–6pp.
Abstract: We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy ( considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with root s = 13 TeV and 300 fb(-1) is able to probe sterile neutrino masses between 10 GeV < m(N) < 20 GeV ( for a right-handed gauge boson mass of 2 TeV < m(WR) < 3.5 TeV). To probe higher masses up to m(N) similar to 30 GeV and m(WR) < 5 TeV, 3000 fb(-1) will be needed. This work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.
|
Fonseca, R. M., Hirsch, M., & Srivastava, R. (2018). Delta L=3 processes: Proton decay and the LHC. Phys. Rev. D, 97(7), 075026–7pp.
Abstract: We discuss lepton number violation in three units. From an effective field theory point of view, Delta L = 3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to Delta L = 3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d = 9, 11, 13 operators which violate lepton number in three units. We then construct one simple concrete model with interesting low- and high-energy phenomenology.
|
Anamiati, G., Fonseca, R. M., & Hirsch, M. (2018). Quasi-Dirac neutrino oscillations. Phys. Rev. D, 97(9), 095008–16pp.
Abstract: Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
|
Gonzalez, M., Hirsch, M., & Kovalenko, S. G. (2018). Neutrinoless double beta decay and QCD running at low energy scales. Phys. Rev. D, 97(11), 115005–6pp.
Abstract: There is a common belief that the main uncertainties in the theoretical analysis of neutrinoless double beta (0 nu beta beta) decay originate from the nuclear matrix elements. Here, we uncover another previously overlooked source of potentially large uncertainties stemming from nonperturbative QCD effects. Recently perturbative QCD corrections have been calculated for all dimension 6 and 9 effective operators describing 0 nu beta beta-decay and their importance for a reliable treatment of 0 nu beta beta-decay has been demonstrated. However, these perturbative results are valid at energy scales above similar to 1 GeV, while the typical 0 nu beta beta scale is about similar to 100 MeV. In view of this fact we examine the possibility of extrapolating the perturbative results towards sub-GeV nonperturbative scales on the basis of the QCD coupling constant “freezing” behavior using background perturbation theory. Our analysis suggests that such an infrared extrapolation does modify the perturbative results for both short-range and long-range mechanisms of 0 nu beta beta-decay in general only moderately. We also discuss that the tensor circle times tensor effective operator cannot appear alone in the low energy limit of any renormalizable high-scale model and then demonstrate that all five linearly independent combinations of the scalar and tensor operators, which can appear in renormalizable models, are infrared stable.
|
Fonseca, R. M., & Hirsch, M. (2018). Delta L >= 4 lepton number violating processes. Phys. Rev. D, 98(1), 015035–12pp.
Abstract: We discuss the experimental prospects for observing processes which violate lepton number (Delta L) in four units ( or more). First, we reconsider neutrinoless quadruple beta decay, deriving a model independent and very conservative lower limit on its half- life of the order of 10(41) ys for Nd-150. This renders quadruple beta decay unobservable for any feasible experiment. We then turn to a more general discussion of different possible low-energy processes with values Delta L >= 4. A simple operator analysis leads to rather pessimistic conclusions about the observability at low-energy experiments in all cases we study. However, the situation looks much brighter for accelerator experiments. For two example models with Delta L = 4 and another one with Delta L = 5, we show how the LHC or a hypothetical future pp collider, such as the FCC, could probe multilepton number violating operators at the TeV scale.
|
Cottin, G., Helo, J. C., & Hirsch, M. (2018). Displaced vertices as probes of sterile neutrino mixing at the LHC. Phys. Rev. D, 98(3), 035012–6pp.
Abstract: We investigate the reach at the LHC to probe light sterile neutrinos with displaced vertices. We focus on sterile neutrinos N with masses m(N) similar to (5-30) GeV that are produced in rare decays of the standard model gauge bosons and decay inside the inner trackers of the LHC detectors. With a strategy that triggers on the prompt lepton accompanying the N displaced vertex and considers charged tracks associated with it, we show that the 13 TeV LHC with 3000/fb is able to probe active-sterile neutrino mixings down to vertical bar V-lN vertical bar(2) approximate to 10(-9), with l = e, mu, which is an improvement of up to 4 orders of magnitude when comparing with current experimental limits from trileptons and proposed lepton-jets searches. In the case when tau mixing is present, mixing angles as low as vertical bar V-tau N vertical bar(2) approximate to 10(-8) can be accessed.
|
Dercks, D., Dreiner, H. K., Hirsch, M., & Wang, Z. S. (2019). Long-lived fermions at AL3X. Phys. Rev. D, 99(5), 055020–10pp.
Abstract: Recently Gligorov et al. [V. V. Gligorov et al., Phys. Rev. D 99, 015023 (2019)] proposed to build a cylindrical detector named AL3X close to the ALICE experiment at interaction point (IP) 2 of the LHC, aiming for discovery of long-lived particles (LLPs) during Run 5 of the HL-LHC. We investigate the potential sensitivity reach of this detector in the parameter space of different new-physics models with long-lived fermions namely heavy neutral leptons (HNLs) and light supersymmetric neutralinos, which have both not previously been studied in this context. Our results show that the AL3X reach can be complementary or superior to that of other proposed detectors such as CODEX-b, FASER, MATHUSLA and SHiP.
|
Cordero-Carrion, I., Hirsch, M., & Vicente, A. (2019). Master Majorana neutrino mass parametrization. Phys. Rev. D, 99(7), 075019–6pp.
Abstract: After introducing a master formula for the Majorana neutrino mass matrix, we present a master parametrization for the Yukawa matrices automatically in agreement with neutrino oscillation data. This parametrization can be used for any model that induces Majorana neutrino masses. The application of the master parametrization is also illustrated in an example model, with special focus on its lepton flavor violating phenomenology.
|
Helo, J. C., Hirsch, M., & Ota, T. (2019). Proton decay at one loop. Phys. Rev. D, 99(9), 095021–14pp.
Abstract: Proton decay is usually discussed in the context of grand unified theories. However, as is well known, in the standard model effective theory proton decay appears in the form of higher-dimensional non-renormalizable operators. Here, we study systematically the one-loop decomposition of the d = 6 B + L violating operators. We exhaustively list the possible one-loop ultraviolet completions of these operators and discuss that, in general, two distinct classes of models appear. Models in the first class need an additional symmetry in order to avoid tree-level proton decay. These models necessarily contain a neutral particle, which could act as a dark matter candidate. For models in the second class the loop contribution dominates automatically over the tree-level proton decay, without the need for additional symmetries. We also discuss possible phenomenology of two example models, one from each class, and their possible connections to neutrino masses, LHC searches and dark matter.
|
Cottin, G., Helo, J. C., Hirsch, M., & Silva, D. (2019). Revisiting the LHC reach in the displaced region of the minimal left-right symmetric model. Phys. Rev. D, 99(11), 115013–4pp.
Abstract: We revisit discovery prospects for a long-lived sterile neutrino N at the LHC in the context of left-right symmetric theories. We focus on a displaced vertex search strategy sensitive to O(GeV) neutrino masses produced via a right-handed W-R boson. Both on-shell and off-shell Drell-Yan production of W-R are considered. We estimate the reach as a function of m(N) and m(WR). With root s = 13 TeV and 300/fb of integrated luminosity, the LHC can probe neutrino masses as high as approximately 30 GeV and m(wR) around 6 TeV. The reach goes up to 11.5 TeV with 3000/tb and m(N) similar to 45 GeV. This represents an improvement of a factor of 2 in sensitivity with respect to earlier work.
|