|
Cordero-Carrion, I., Hirsch, M., & Vicente, A. (2020). General parametrization of Majorana neutrino mass models. Phys. Rev. D, 101(7), 075032–25pp.
Abstract: We discuss a general formula which allows to automatically reproduce experimental data for Majorana neutrino mass models, while keeping the complete set of the remaining model parameters free for general scans, as necessary in order to provide reliable predictions for observables outside the neutrino sector. We provide a proof of this master parametrization and show how to apply it for several well-known neutrino mass models from the literature. We also discuss a list of special cases, in which the Yukawa couplings have to fulfill some particular additional conditions.
|
|
|
Cordero-Carrion, I., Hirsch, M., & Vicente, A. (2019). Master Majorana neutrino mass parametrization. Phys. Rev. D, 99(7), 075019–6pp.
Abstract: After introducing a master formula for the Majorana neutrino mass matrix, we present a master parametrization for the Yukawa matrices automatically in agreement with neutrino oscillation data. This parametrization can be used for any model that induces Majorana neutrino masses. The application of the master parametrization is also illustrated in an example model, with special focus on its lepton flavor violating phenomenology.
|
|
|
Cottin, G., Helo, J. C., & Hirsch, M. (2018). Searches for light sterile neutrinos with multitrack displaced vertices. Phys. Rev. D, 97(5), 055025–6pp.
Abstract: We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy ( considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with root s = 13 TeV and 300 fb(-1) is able to probe sterile neutrino masses between 10 GeV < m(N) < 20 GeV ( for a right-handed gauge boson mass of 2 TeV < m(WR) < 3.5 TeV). To probe higher masses up to m(N) similar to 30 GeV and m(WR) < 5 TeV, 3000 fb(-1) will be needed. This work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.
|
|
|
Cottin, G., Helo, J. C., & Hirsch, M. (2018). Displaced vertices as probes of sterile neutrino mixing at the LHC. Phys. Rev. D, 98(3), 035012–6pp.
Abstract: We investigate the reach at the LHC to probe light sterile neutrinos with displaced vertices. We focus on sterile neutrinos N with masses m(N) similar to (5-30) GeV that are produced in rare decays of the standard model gauge bosons and decay inside the inner trackers of the LHC detectors. With a strategy that triggers on the prompt lepton accompanying the N displaced vertex and considers charged tracks associated with it, we show that the 13 TeV LHC with 3000/fb is able to probe active-sterile neutrino mixings down to vertical bar V-lN vertical bar(2) approximate to 10(-9), with l = e, mu, which is an improvement of up to 4 orders of magnitude when comparing with current experimental limits from trileptons and proposed lepton-jets searches. In the case when tau mixing is present, mixing angles as low as vertical bar V-tau N vertical bar(2) approximate to 10(-8) can be accessed.
|
|
|
Cottin, G., Helo, J. C., Hirsch, M., Pena, C., Wang, C. S. A., & Xie, S. (2023). Long-lived heavy neutral leptons with a displaced shower signature at CMS. J. High Energy Phys., 02(2), 011–16pp.
Abstract: We study the LHC discovery potential in the search for heavy neutral leptons (HNL) with a new signature: a displaced shower in the CMS muon detector, giving rise to a large cluster of hits forming a displaced shower. A new Delphes module is used to model the CMS detector response for such displaced decays. We reinterpret a dedicated CMS search for neutral long-lived particles decaying in the CMS muon endcap detectors for the minimal HNL scenario. We demonstrate that this new strategy is particularly sensitive to active-sterile mixings with tau leptons, due to hadronic tau decays. HNL masses between similar to 1-6 GeV can be accessed for mixings as low as vertical bar V-tau N vertical bar(2) similar to 10(-7), probing unique regions of parameter space in the tau sector.
|
|
|
Cottin, G., Helo, J. C., Hirsch, M., & Silva, D. (2019). Revisiting the LHC reach in the displaced region of the minimal left-right symmetric model. Phys. Rev. D, 99(11), 115013–4pp.
Abstract: We revisit discovery prospects for a long-lived sterile neutrino N at the LHC in the context of left-right symmetric theories. We focus on a displaced vertex search strategy sensitive to O(GeV) neutrino masses produced via a right-handed W-R boson. Both on-shell and off-shell Drell-Yan production of W-R are considered. We estimate the reach as a function of m(N) and m(WR). With root s = 13 TeV and 300/fb of integrated luminosity, the LHC can probe neutrino masses as high as approximately 30 GeV and m(wR) around 6 TeV. The reach goes up to 11.5 TeV with 3000/tb and m(N) similar to 45 GeV. This represents an improvement of a factor of 2 in sensitivity with respect to earlier work.
|
|
|
Cottin, G., Helo, J. C., Hirsch, M., Titov, A., & Wang, Z. S. (2021). Heavy neutral leptons in effective field theory and the high-luminosity LHC. J. High Energy Phys., 09(9), 039–34pp.
Abstract: Heavy neutral leptons (HNLs) with masses around the electroweak scale are expected to be rather long-lived particles, as a result of the observed smallness of the active neutrino masses. In this work, we study long-lived HNLs in NRSMEFT, a Standard Model (SM) extension with singlet fermions to which we add non-renormalizable operators up to dimension-6. Operators which contain two HNLs can lead to a sizable enhancement of the production cross sections, compared to the minimal case where HNLs are produced only via their mixing with the SM neutrinos. We calculate the expected sensitivities for the ATLAS detector and the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP in this setup. The sensitive ranges of the HNL mass and of the active-heavy mixing angle are much larger than those in the minimal case. We study both, Dirac and Majorana, HNLs and discuss how the two cases actually differ phenomenologically, for HNL masses above roughly 100 GeV.
|
|
|
Curtin, D. et al, & Hirsch, M. (2019). Long-lived particles at the energy frontier: the MATHUSLA physics case. Rep. Prog. Phys., 82(11), 116201–133pp.
Abstract: We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the μm scale up to the Big Bang Nucleosynthesis limit of similar to 10(7) m. Neutral LLPs with lifetimes above similar to 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.
|
|
|
de Campos, F., Eboli, O. J. P., Hirsch, M., Magro, M. B., Porod, W., Restrepo, D., et al. (2010). Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider. Phys. Rev. D, 82(7), 075002–8pp.
Abstract: The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
|
|
|
De Romeri, V., & Hirsch, M. (2012). Sneutrino dark matter in low-scale seesaw scenarios. J. High Energy Phys., 12(12), 106–28pp.
Abstract: We consider supersymmetric models in which sneutrinos are viable dark matter candidates. These are either simple extensions of the Minimal Supersymmetric Standard Model with additional singlet superfields, such as the inverse or linear seesaw, or a model with an additional U(1) group. All of these models can accomodate the observed small neutrino masses and large mixings. We investigate the properties of sneutrinos as dark matter candidates in these scenarios. We check for phenomenological bounds, such as correct relic abundance, consistency with direct detection cross section limits and laboratory constraints, among others lepton flavour violating (LFV) charged lepton decays. While inverse and linear seesaw lead to different results for LFV, both models have very similar dark matter phenomenology, consistent with all experimental bounds. The extended gauge model shows some additional and peculiar features due to the presence of an extra gauge boson Z' and an additional light Higgs. Specifically, we point out that for sneutrino LSPs there is a strong constraint on the mass of the Z' due to the experimental bounds on the direct detection scattering cross section.
|
|