Arbelaez, C., Gonzalez, M., Hirsch, M., Neill, N. A., & Restrepo, D. (2025). Effective field theory and scalar triplet dark matter. J. High Energy Phys., 04(4), 118–22pp.
Abstract: We discuss an extension of the standard model with a real scalar triplet, T, including non-renormalizable operators (NROs) up to d = 6. If T is odd under a Z2 symmetry, the neutral component of T is a good candidate for the dark matter (DM) of the universe. We calculate the relic density and constraints from direct and indirect detection on such a setup, concentrating on the differences with respect to the simple model for a DM T with only renormalizable interactions. Bosonic operators can change the relic density of the triplet drastically, opening up new parameter space for the model. Indirect detection constraints, on the other hand, rule out an interesting part of the allowed parameter space already today and future CTA data will, very likely, provide a decisive test for this setup.
|
Arbelaez, C., Gonzalez, M., Hirsch, M., & Kovalenko, S. G. (2016). QCD corrections and long-range mechanisms of neutrinoless double beta decay. Phys. Rev. D, 94(9), 096014–5pp.
Abstract: Recently it has been demonstrated that QCD corrections are numerically important for short-range mechanisms (SRM) of neutrinoless double beta decay (0 nu beta beta) mediated by heavy particle exchange. This is due to the effect of color mismatch for certain effective operators, which leads to mixing between different operators with vastly different nuclear matrix elements (NMEs). In this note we analyze the QCD corrections for long-range mechanisms (LRM), due to diagrams with light-neutrino exchange between a Standard Model (V-A)chi(V-A) and a beyond the SM lepton number violating vertex. We argue that in contrast to the SRM in the LRM case, there is no operator mixing from color-mismatched operators. This is due to a combined effect of the nuclear short-range correlations and color invariance. As a result, the QCD corrections to the LRM amount to an effect no more than 60%, depending on the operator in question. Although less crucial, taken into account QCD running makes theoretical predictions for 0 nu beta beta-decay more robust also for LRM diagrams. We derive the current experimental constraints on the Wilson coefficients for all LRM effective operators.
|
Arbelaez, C., Fonseca, R. M., Romao, J. C., & Hirsch, M. (2013). Supersymmetric SO(10)-inspired GUTs with sliding scales. Phys. Rev. D, 87(7), 075010–19pp.
Abstract: We construct lists of supersymmetric models with extended gauge groups at intermediate steps, all of which are inspired by SO(10) unification. We consider three different kinds of setups: (i) the model has exactly one additional intermediate scale with a left-right (LR) symmetric group; (ii) SO(10) is broken to the LR group via an intermediate Pati-Salam scale; and (iii) the LR group is broken into SU(3)(c) X SU(2)(L) X U(1)(R) X U(1)(B-L), before breaking to the standard model (SM) group. We use sets of conditions, which we call the “sliding mechanism,” which yield unification with the extended gauge group(s) allowed at arbitrary intermediate energy scales. All models thus can have new gauge bosons within the reach of the LHC, in principle. We apply additional conditions, such as perturbative unification, renormalizability and anomaly cancellation and find that, despite these requirements, for the ansatz (i) with only one additional scale still around 50 different variants exist that can have a LR symmetry below 10 TeV. For the more complicated schemes (ii) and (iii) literally thousands of possible variants exist, and for scheme (ii) we have also found variants with very low Pati-Salam scales. We also discuss possible experimental tests of the models from measurements of supersymmetry masses. Assuming mSugra boundary conditions we calculate certain combinations of soft terms, called “invariants,” for the different classes of models. Values for all the invariants can be classified into a small number of sets, which contain information about the class of models and, in principle, the scale of beyond-minimal supersymmetric extension of the Standard Model physics, even in case the extended gauge group is broken at an energy beyond the reach of the LHC.
|
Arbelaez, C., Cottin, G., Helo, J. C., Hirsch, M., & de Melo, T. B. (2025). Long-lived particle phenomenology in one-loop neutrino mass models with dark matter. J. High Energy Phys., 02(2), 049–22pp.
Abstract: Neutrino masses and dark matter (DM) might have a common origin. The scotogenic model can be considered the proto-type model realizing this idea, but many other variants exist. In this paper we explore the phenomemology of a particular DM neutrino mass model, containing a triplet scalar. We calculate the relic density and check for constraints from direct detection experiments. The parameter space of the model, allowed by these constraints, contains typically a long-lived or quasi-stable doubly charged scalar, that can be searched for at the LHC. We reinterpret existing searches to derive limits on the masses of the scalars of the model and estimate future sensitivities in the high-luminosity phase of the LHC. The searches we discuss can serve to constrain also many other 1-loop neutrino mass models.
|
Arbelaez, C., Cottin, G., Helo, J. C., & Hirsch, M. (2020). Long-lived charged particles and multilepton signatures from neutrino mass models. Phys. Rev. D, 101(9), 095033–13pp.
Abstract: Lepton number violation (LNV) is usually searched for by the LHC collaborations using the same-sign dilepton plus jet signature. In this paper, we discuss multilepton signals of LNV that can arise with experimentally interesting rates in certain loop models of neutrino mass generation. Interestingly, in such models, the observed smallness of the active neutrino masses, together with the high multiplicity of the final states, leads in large parts of the viable parameter space of such models to the prediction of long-lived charged particles, which leave highly ionizing tracks in the detectors. We focus on one particular one-loop neutrino mass model in this class and discuss its LHC phenomenology in some detail.
|
Arbelaez, C., Cepedello, R., Helo, J. C., Hirsch, M., & Kovalenko, S. (2022). How many 1-loop neutrino mass models are there? J. High Energy Phys., 08(8), 023–29pp.
Abstract: It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.
|
Arbelaez, C., Cepedello, R., Fonseca, R. M., & Hirsch, M. (2020). (g-2) anomalies and neutrino mass. Phys. Rev. D, 102(7), 075005–14pp.
Abstract: Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments a(alpha) = (g – 2)(alpha) for a = e, μin a neutrino mass model originally proposed by Babu, Nandi, and Tavartkiladze (BNT). We discuss two variants of the model: the original model, and a minimally extended version with an additional hypercharge-zero triplet scalar. While the original BNT model can explain a(mu), only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC, and in the part of parameter space where the model explains the experimental anomalies it predicts certain specific decay patterns for the exotic fermions.
|
Arbelaez, C., Carcamo Hernandez, A. E., Cepedello, R., Hirsch, M., & Kovalenko, S. (2019). Radiative type-I seesaw neutrino masses. Phys. Rev. D, 100(11), 115021–7pp.
Abstract: We discuss a radiative type-I seesaw. In these models, the radiative generation of Dirac neutrino masses allows to explain the smallness of the observed neutrino mass scale for rather light right-handed neutrino masses in a type-1 seesaw. We first present the general idea in a model-independent way. This allows us to estimate the typical scale of right-handed neutrino mass as a function of the number of loops. We then present two example models, at the one- and two-loop level, which we use to discuss neutrino masses and lepton-flavor-violating constraints in more detail. For the two-loop example, right-handed neutrino masses must lie below 100 GeV, thus making this class of models testable in heavy neutral lepton searches.
|
Anamiati, G., Hirsch, M., & Nardi, E. (2016). Quasi-Dirac neutrinos at the LHC. J. High Energy Phys., 10(10), 010–19pp.
Abstract: Lepton number violation is searched for at the LHC using same-sign leptons plus jets. The standard lore is that the ratio of same-sign lepton to opposite-sign lepton events, R-ll, is equal to R-ll = 1 (R-ll = 0) for Majorana (Dirac) neutrinos. We clarify under which conditions the ratio Rll can assume values different from 0 and 1, and we argue that the precise value 0 < R-ll < 1 is controlled by the mass splitting versus the width of the quasi-Dirac resonances. A measurement of R-ll not equal 0, 1 would then contain valuable information about the origin of neutrino masses. We consider as an example the inverse seesaw mechanism in a left-right symmetric scenario, which is phenomenologically particularly interesting since all the heavy states in the high energy completion of the model could be within experimental reach. A prediction of this scenario is a correlation between the values of R-ll and the ratio between the rates for heavy neutrino decays into standard model gauge bosons, and into three body final states ljj mediated by off-shell W-R exchange.
|
Anamiati, G., Fonseca, R. M., & Hirsch, M. (2018). Quasi-Dirac neutrino oscillations. Phys. Rev. D, 97(9), 095008–16pp.
Abstract: Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
|