Giarnetti, A., Herrero-Garcia, J., Marciano, S., Meloni, D., & Vatsyayan, D. (2024). Neutrino masses from new seesaw models: low-scale variants and phenomenological implications. Eur. Phys. J. C, 84(8), 803–19pp.
Abstract: With just the Standard Model Higgs doublet, there are only three types of seesaw models that generate light Majorana neutrino masses at tree level after electroweak spontaneous symmetry breaking. However, if there exist additional TeV scalars acquiring vacuum expectation values, coupled with heavier fermionic multiplets, several new seesaw models become possible. These new seesaws are the primary focus of this study and correspond to the tree-level ultraviolet completions of the effective operators studied in a companion publication. We are interested in the genuine cases, in which the standard seesaw contributions are absent. In addition to the tree-level generation of neutrino masses, we also consider the one-loop contributions. Furthermore, we construct low-energy versions that exhibit a very rich phenomenology. Specifically, we scrutinise the generation of dimension-6 operators and explore their implications, including non-unitarity of the leptonic mixing matrix, non-universal Z-boson interactions, and lepton flavor violation. Finally, we provide (Generalised) Scotogenic-like variants that incorporate viable dark matter candidates.
|
Cai, Y., Herrero-Garcia, J., Schmidt, M. A., Vicente, A., & Volkas, R. R. (2017). From the Trees to the Forest: A Review of Radiative Neutrino Mass Models. Front. Physics, 5, 63–56pp.
Abstract: A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.
|
Herrero-Garcia, J., Schwetz, T., & Zupan, J. (2012). On the annual modulation signal in dark matter direct detection. J. Cosmol. Astropart. Phys., 03(3), 005–28pp.
Abstract: We derive constraints on the annual modulation signal in Dark Matter (DM) direct detection experiments in terms of the unmodulated event rate. A general bound independent of the details of the DM distribution follows from the assumption that the motion of the earth around the sun is the only source of time variation. The bound is valid for a very general class of particle physics models and also holds in the presence of an unknown unmodulated background. More stringent bounds are obtained, if modest assumptions on symmetry properties of the DM halo are adopted. We illustrate the bounds by applying them to the annual modulation signals reported by the DAMA and CoGeNT experiments in the framework of spin-independent elastic scattering. While the DAMA signal satisfies our bounds, severe restrictions on the DM mass can be set for CoGeNT.
|
Bozorgnia, N., Herrero-Garcia, J., Schwetz, T., & Zupan, J. (2013). Halo-independent methods for inelastic dark matter scattering. J. Cosmol. Astropart. Phys., 07(7), 049–15pp.
Abstract: We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.
|
Herrero-Garcia, J., Patrick, R., & Scaffidi, A. (2022). A semi-supervised approach to dark matter searches in direct detection data with machine learning. J. Cosmol. Astropart. Phys., 02, 039–19pp.
Abstract: The dark matter sector remains completely unknown. It is therefore crucial to keep an open mind regarding its nature and possible interactions. Focusing on the case of Weakly Interacting Massive Particles, in this work we make this general philosophy more concrete by applying modern machine learning techniques to dark matter direct detection. We do this by encoding and decoding the graphical representation of background events in the XENONnT experiment with a convolutional variational autoencoder. We describe a methodology that utilizes the `anomaly score' derived from the reconstruction loss of the convolutional variational autoencoder as well as a pre-trained standard convolutional neural network, in a semi-supervised fashion. Indeed, we observe that optimum results are obtained only when both unsupervised and supervised anomaly scores are considered together. A data set that has a higher proportion of anomaly score is deemed anomalous and deserves further investigation. Contrary to classical analyses, in principle all information about the events is used, preventing unnecessary information loss. Lastly, we demonstrate the reach of learning-focused anomaly detection in this context by comparing results with classical inference, observing that, if tuned properly, these techniques have the potential to outperform likelihood-based methods.
|
Aparici, A., Herrero-Garcia, J., Rius, N., & Santamaria, A. (2011). Neutrino masses from new generations. J. High Energy Phys., 07(7), 122.
Abstract: We reconsider the possibility that Majorana masses for the three known neutrinos are generated radiatively by the presence of a fourth generation and one right-handed neutrino with Yukawa couplings and a Majorana mass term. We find that the observed light neutrino mass hierarchy is not compatible with low energy universality bounds in this minimal scenario, but all present data can be accommodated with five generations and two right-handed neutrinos. Within this framework, we explore the parameter space regions which are currently allowed and could lead to observable effects in neutrinoless double beta decay, mu-e conversion in nuclei and μ-> e gamma experiments. We also discuss the detection prospects at LHC.
|
Aparici, A., Herrero-Garcia, J., Rius, N., & Santamaria, A. (2012). On the nature of the fourth generation neutrino and its implications. J. High Energy Phys., 07(7), 030–31pp.
Abstract: We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth-generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth-generation neutrinos.
|
Herrero-Garcia, J., Rius, N., & Santamaria, A. (2016). Higgs lepton flavour violation: UV completions and connection to neutrino masses. J. High Energy Phys., 11(11), 084–45pp.
Abstract: We study lepton violating Higgs (HLFV) decays, first from the effective field theory (EFT) point of view, and then analysing the different high-energy realizations of the operators of the EFT, highlighting the most promising models. We argue why two Higgs doublet models can have a BR(h -> tau mu) similar to 0:01, and why this rate is suppressed in all other realizations including vector-like leptons. We further discuss HLFV in the context of neutrino mass models: in most cases it is generated at one loop giving always BR (h -> tau mu) < 10(-4) and typically much less, which is beyond experimental reach. However, both the Zee model and extended left-right symmetric models contain extra SU(2) doublets coupled to leptons and could in principle account for the observed excess, with interesting connections between HLFV and neutrino parameters.
|
Felkl, T., Herrero-Garcia, J., & Schmidt, M. A. (2021). The singly-charged scalar singlet as the origin of neutrino masses. J. High Energy Phys., 05(5), 122–39pp.
Abstract: We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.
|
Beniwal, A., Herrero-Garcia, J., Leerdam, N., White, M., & Williams, A. G. (2021). The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model. J. High Energy Phys., 06(6), 136–34pp.
Abstract: The Scotogenic Model is one of the most minimal models to account for both neutrino masses and dark matter (DM). In this model, neutrino masses are generated at the one-loop level, and in principle, both the lightest fermion singlet and the lightest neutral component of the scalar doublet can be viable DM candidates. However, the correct DM relic abundance can only be obtained in somewhat small regions of the parameter space, as there are strong constraints stemming from lepton flavour violation, neutrino masses, electroweak precision tests and direct detection. For the case of scalar DM, a sufficiently large lepton-number-violating coupling is required, whereas for fermionic DM, coannihilations are typically necessary. In this work, we study how the new scalar singlet modifies the phenomenology of the Scotogenic Model, particularly in the case of scalar DM. We find that the new singlet modifies both the phenomenology of neutrino masses and scalar DM, and opens up a large portion of the parameter space of the original model.
|