Aparici, A., Herrero-Garcia, J., Rius, N., & Santamaria, A. (2012). On the nature of the fourth generation neutrino and its implications. J. High Energy Phys., 07(7), 030–31pp.
Abstract: We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth-generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth-generation neutrinos.
|
Herrero-Garcia, J., Schwetz, T., & Zupan, J. (2012). On the annual modulation signal in dark matter direct detection. J. Cosmol. Astropart. Phys., 03(3), 005–28pp.
Abstract: We derive constraints on the annual modulation signal in Dark Matter (DM) direct detection experiments in terms of the unmodulated event rate. A general bound independent of the details of the DM distribution follows from the assumption that the motion of the earth around the sun is the only source of time variation. The bound is valid for a very general class of particle physics models and also holds in the presence of an unknown unmodulated background. More stringent bounds are obtained, if modest assumptions on symmetry properties of the DM halo are adopted. We illustrate the bounds by applying them to the annual modulation signals reported by the DAMA and CoGeNT experiments in the framework of spin-independent elastic scattering. While the DAMA signal satisfies our bounds, severe restrictions on the DM mass can be set for CoGeNT.
|
Bas i Beneito, A., Gargalionis, J., Herrero-Garcia, J., Santamaria, A., & Schmidt, M. A. (2024). An EFT approach to baryon number violation: lower limits on the new physics scale and correlations between nucleon decay modes. J. High Energy Phys., 07(7), 004–37pp.
Abstract: Baryon number is an accidental symmetry of the Standard Model at the Lagrangian level. Its violation is arguably one of the most compelling phenomena predicted by physics beyond the Standard Model. Furthermore, there is a large experimental effort to search for it including the Hyper-K, DUNE, JUNO, and THEIA experiments. Therefore, an agnostic, model-independent, analysis of baryon number violation using the power of Effective Field Theory is very timely. In particular, in this work we study the contribution of dimension six and seven effective operators to |triangle(B – L)| = 0, 2 nucleon decays taking into account the effects of Renormalisation Group Evolution. We obtain lower limits on the energy scale of each operator and study the correlations between different decay modes. We find that for some operators the effect of running is very significant.
|