|
Coito, L., Faubel, C., Herrero-Garcia, J., Santamaria, A., & Titov, A. (2022). Sterile neutrino portals to Majorana dark matter: effective operators and UV completions. J. High Energy Phys., 08(8), 085–36pp.
Abstract: Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.
|
|
|
de Gouvea, A., Herrero-Garcia, J., & Kobach, A. (2014). Neutrino masses, grand unification, and baryon number violation. Phys. Rev. D, 90(1), 016011–11pp.
Abstract: If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B – L) by two (or more) units, including neutron-antineutron oscillations and B – L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.
|
|
|
Felkl, T., Herrero-Garcia, J., & Schmidt, M. A. (2021). The singly-charged scalar singlet as the origin of neutrino masses. J. High Energy Phys., 05(5), 122–39pp.
Abstract: We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.
|
|
|
Gargalionis, J., Herrero-Garcia, J., & Schmidt, M. A. (2024). Model-independent estimates for loop-induced baryon-number-violating nucleon decays. J. High Energy Phys., 06(6), 182–52pp.
Abstract: Baryon number is an accidental symmetry of the Standard Model (SM) Lagrangian that so far has been measured to be exactly preserved, although it is expected to be violated at higher energies. In this work we compute order-of-magnitude estimates for the matching contributions of generic ultraviolet models to effective operators that generate nucleon decay processes. This is done in a systematic and automated way using operators constructed from SM fields up to dimension nine and working in a framework that has proved useful in the study of lepton-number violation. For each of the operators we derive estimates for the rates of different nucleon-decay channels. These allow us to establish model-independent lower bounds on the underlying new-physics scale and identify potential correlations between the various decay modes. The results are most relevant for families of models that generate the considered operator. This analysis is especially timely given the expected future sensitivities in numerous experiments such as Hyper-K, DUNE, JUNO and THEIA.
|
|
|
Giarnetti, A., Herrero-Garcia, J., Marciano, S., Meloni, D., & Vatsyayan, D. (2024). Neutrino masses from new seesaw models: low-scale variants and phenomenological implications. Eur. Phys. J. C, 84(8), 803–19pp.
Abstract: With just the Standard Model Higgs doublet, there are only three types of seesaw models that generate light Majorana neutrino masses at tree level after electroweak spontaneous symmetry breaking. However, if there exist additional TeV scalars acquiring vacuum expectation values, coupled with heavier fermionic multiplets, several new seesaw models become possible. These new seesaws are the primary focus of this study and correspond to the tree-level ultraviolet completions of the effective operators studied in a companion publication. We are interested in the genuine cases, in which the standard seesaw contributions are absent. In addition to the tree-level generation of neutrino masses, we also consider the one-loop contributions. Furthermore, we construct low-energy versions that exhibit a very rich phenomenology. Specifically, we scrutinise the generation of dimension-6 operators and explore their implications, including non-unitarity of the leptonic mixing matrix, non-universal Z-boson interactions, and lepton flavor violation. Finally, we provide (Generalised) Scotogenic-like variants that incorporate viable dark matter candidates.
|
|
|
Giarnetti, A., Herrero-Garcia, J., Marciano, S., Meloni, D., & Vatsyayan, D. (2024). Neutrino masses from new Weinberg-like operators: phenomenology of TeV scalar multiplets. J. High Energy Phys., 05(5), 055–37pp.
Abstract: The unique dimension-5 effective operator, LLHH, known as the Weinberg operator, generates tiny Majorana masses for neutrinos after electroweak spontaneous symmetry breaking. If there are new scalar multiplets that take vacuum expectation values (VEVs), they should not be far from the electroweak scale. Consequently, they may generate new dimension-5 Weinberg-like operators which in turn also contribute to Majorana neutrino masses. In this study, we consider scenarios with one or two new scalars up to quintuplet SU(2) representations. We analyse the scalar potentials, studying whether the new VEVs can be induced and therefore are naturally suppressed, as well as the potential existence of pseudo-Nambu-Goldstone bosons. Additionally, we also obtain general limits on the new scalar multiplets from direct searches at colliders, loop corrections to electroweak precision tests and the W-boson mass.
|
|
|
Herrero-Garcia, J., Landini, G., & Vatsyayan, D. (2023). Asymmetries in extended dark sectors: a cogenesis scenario. J. High Energy Phys., 05(5), 049–41pp.
Abstract: The observed dark matter relic abundance may be explained by different mechanisms, such as thermal freeze-out/freeze-in, with one or more symmetric/asymmetric components. In this work we investigate the role played by asymmetries in determining the yield and nature of dark matter in non-minimal scenarios with more than one dark matter particle. In particular, we show that the energy density of a particle may come from an asymmetry, even if the particle is asymptotically symmetric by nature. To illustrate the different effects of asymmetries, we adopt a model with two dark matter components. We embed it in a multi-component cogenesis scenario that is also able to reproduce neutrino masses and the baryon asymmetry. In some cases, the model predicts an interesting monochromatic neutrino line that may be searched for at neutrino telescopes.
|
|
|
Herrero-Garcia, J., Nebot, M., Rius, N., & Santamaria, A. (2014). The Zee-Babu model revisited in the light of new data. Nucl. Phys. B, 885, 542–570.
Abstract: We update previous analyses of the Zee-Babu model in the light of new data, e.g., the mixing angle On, the rare decay μ-> e gamma and the LHC results. We also analyze the possibility of accommodating the deviations in Gamma (H -> gamma gamma) hinted by the LHC experiments, and the stability of the scalar potential. We find that neutrino oscillation data and low energy constraints are still compatible with masses of the extra charged scalars accessible to LHC. Moreover, if any of them is discovered, the model can be falsified by combining the information on the singly and doubly charged scalar decay modes with neutrino data. Conversely, if the neutrino spectrum is found to be inverted and the CP phase delta is quite different from pi, the masses of the charged scalars will be well outside the LHC reach.
|
|
|
Herrero-Garcia, J., Patrick, R., & Scaffidi, A. (2022). A semi-supervised approach to dark matter searches in direct detection data with machine learning. J. Cosmol. Astropart. Phys., 02, 039–19pp.
Abstract: The dark matter sector remains completely unknown. It is therefore crucial to keep an open mind regarding its nature and possible interactions. Focusing on the case of Weakly Interacting Massive Particles, in this work we make this general philosophy more concrete by applying modern machine learning techniques to dark matter direct detection. We do this by encoding and decoding the graphical representation of background events in the XENONnT experiment with a convolutional variational autoencoder. We describe a methodology that utilizes the `anomaly score' derived from the reconstruction loss of the convolutional variational autoencoder as well as a pre-trained standard convolutional neural network, in a semi-supervised fashion. Indeed, we observe that optimum results are obtained only when both unsupervised and supervised anomaly scores are considered together. A data set that has a higher proportion of anomaly score is deemed anomalous and deserves further investigation. Contrary to classical analyses, in principle all information about the events is used, preventing unnecessary information loss. Lastly, we demonstrate the reach of learning-focused anomaly detection in this context by comparing results with classical inference, observing that, if tuned properly, these techniques have the potential to outperform likelihood-based methods.
|
|
|
Herrero-Garcia, J., Rius, N., & Santamaria, A. (2016). Higgs lepton flavour violation: UV completions and connection to neutrino masses. J. High Energy Phys., 11(11), 084–45pp.
Abstract: We study lepton violating Higgs (HLFV) decays, first from the effective field theory (EFT) point of view, and then analysing the different high-energy realizations of the operators of the EFT, highlighting the most promising models. We argue why two Higgs doublet models can have a BR(h -> tau mu) similar to 0:01, and why this rate is suppressed in all other realizations including vector-like leptons. We further discuss HLFV in the context of neutrino mass models: in most cases it is generated at one loop giving always BR (h -> tau mu) < 10(-4) and typically much less, which is beyond experimental reach. However, both the Zee model and extended left-right symmetric models contain extra SU(2) doublets coupled to leptons and could in principle account for the observed excess, with interesting connections between HLFV and neutrino parameters.
|
|