|
ATLAS and CMS Collaborations(Aad, G. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at root s=7 and 8 TeV. J. High Energy Phys., 08(8), 045–113pp.
Abstract: Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a W or a Z boson or a pair of top quarks, and of the six decay modes H -> ZZ, W W , gamma gamma, tau tau, bb, and μmu. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton-proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb(-1) at root s = 7 TeV and 20 fb(-1) at root s = 8 TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 +/- 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the H -> tau tau decay of 5.4 and 5.5 standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.
|
|
|
ATLAS and CMS Collaborations(Aad, G. et al), Alvarez Piqueras, D., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fernandez Martinez, P., et al. (2015). Combined Measurement of the Higgs Boson Mass in pp Collisions at root s=7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett., 114(19), 191803–33pp.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H --> gamma gamma and H --> ZZ --> 4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is m(H) = 125.09 +/- 0.21 (stat) +/- 0.11 (syst) GeV.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Search for squarks and gluinos in final states with jets and missing transverse momentum at root s=13 TeV with the ATLAS detector. Eur. Phys. J. C, 76(7), 392–29pp.
Abstract: A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in root s = 13 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb(-1) of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95 % confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Search for new phenomena in different-flavour high-mass dilepton final states in pp collisions at root s=13Tev with the ATLAS detector. Eur. Phys. J. C, 76(10), 541–28pp.
Abstract: A search is performed for a heavy particle decaying into different flavour dilepton pairs (, or ), using 3.2 fb of proton-proton collision data at TeV collected in 2015 by the ATLAS detector at the Large Hadron Collider. No excess over the Standard Model prediction is observed. Limits at the 95 % credibility level are set on the mass of a boson with lepton-flavour-violating couplings at 3.0, 2.7 and 2.6 TeV, and on the mass of a supersymmetric sneutrino with R-parity-violating couplings at 2.3, 2.2 and 1.9 TeV, for , and final states, respectively. The results are also interpreted as limits on the threshold mass for quantum black hole production.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Charged-particle distributions at low transverse momentum in root s=13 TeV pp interactions measured with the ATLAS detector at the LHC. Eur. Phys. J. C, 76(9), 502–22pp.
Abstract: Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb(-1). The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Measurement of the b(b)over-bar dijet cross section in pp collisions at root s=7 TeV with the ATLAS detector. Eur. Phys. J. C, 76(12), 670–24pp.
Abstract: The dijet production cross section for jets containing a b-hadron (b-jets) has been measured in protonproton collisions with a centre-of-mass energy of root s = 7 TeV, using the ATLAS detector at the LHC. The data used correspond to an integrated luminosity of 4.2 fb(-1). The cross section is measured for events with two identified b-jets with a transverse momentum pT > 20 GeV and a minimum separation in the eta-phi plane of Delta R = 0.4. At least one of the jets in the event is required to have p(T) > 270 GeV. The cross section is measured differentially as a function of dijet invariant mass, dijet transverse momentum, boost of the dijet system, and the rapidity difference, azimuthal angle and angular distance between the b-jets. The results are compared to different predictions of leading order and next-to-leading order perturbative quantum chromodynamics matrix elements supplemented with models for parton-showers and hadronization.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data. Eur. Phys. J. C, 76(12), 666–42pp.
Abstract: The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb(-1) of pp collision data collected at the LHC at root s = 7 TeV and 20.3 fb-1 at root s = 8 TeV. The efficiencies are measured separately for converted and unconverted photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momenta in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 TeV data and between 0.5% and 5.6% in 8 TeV data, depending on the photon transverse momentum and pseudorapidity.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Search for bottom squark pair production in proton-proton collisions at root s=13 TeV with the ATLAS detector. Eur. Phys. J. C, 76(10), 547–25pp.
Abstract: The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ((b) over tilde (1)) is reported. The search uses 3.2 fb(-1) of pp collisions at root s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from b-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95 % confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric R-parity-conserving models in which the (b) over tilde (1) is the lightest squark and is assumed to decay exclusively via (b) over tilde (1) -> b (chi) over tilde (0)(1), where (chi) over tilde (0)(1) is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the. (chi) over tilde (0)(1) mass below 360 (100) GeV whilst differences in mass above 100 GeV between the (b) over tilde (1) and the (chi) over tilde (0)(1) are excluded up to a (b) over tilde (1) mass of 500 GeV.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Measurement of the relative width difference of the B-0-(B)over-bar(0) system with the ATLAS detector. J. High Energy Phys., 06(6), 081–39pp.
Abstract: This paper presents the measurement of the relative width difference Delta Gamma(d)/Gamma(d) of the B-0-(B) over bar (0) system using the data collected by the Lambda TLAS experiment at the LHC in pp collisions at root s = 7 TeV and root s= 8 TeV and corresponding to an integrated luminosity of 25.2 fb(-1). The value of Delta Gamma(d)/Gamma(d) is obtained by comparing the decay-time distributions of B-0 -> J/Psi K-S and (B) over bar (0) -> J/Psi K*(0)(892) decays. The result is Delta Gamma(d)/Gamma(d) = (-0.1 +/- 1.1 (stat.) +/- 0.9 (syst.)) x 10(-2). Currently, this is the most precise single measurement of AFd/Fd. It agrees with the Standard Model prediction and the measurements by other experiments.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector. J. High Energy Phys., 06(6), 059–41pp.
Abstract: Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton-proton collisions at a centre-of- mass energy of 13TeV and correspond to an integrated luminosity of 3.2 fb(-1). The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses below 710 GeV for dark matter candidate masses below 150 GeV. In an effective theory of dark matter production, values of the suppression scale M-* up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding M-D up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions; the limits are reduced by 20 40% depending on the number of additional spatial dimensions when applying a truncation procedure.
|
|