|
Beneke, M., Hellmann, C., & Ruiz-Femenia, P. (2015). Heavy neutralino relic abundance with Sommerfeld enhancements – a study of pMSSM scenarios. J. High Energy Phys., 03(3), 162–37pp.
Abstract: We present a detailed discussion of Sommerfeld enhancements in neutralino dark matter relic abundance calculations for several popular benchmark scenarios in the general MSSM. Our analysis is focused on models with heavy wino- and higgsino-like neutralino LSI' and models interpolating between these two scenarios. This work is the first phenomenological application of effective field theory methods that we have developed in earlier work and that allow for the consistent study of Sommerfeld enhancements in nonrelativistic neutralino and chargino co-annihilation reactions within the general MSSM, away from the pure-wino and pure-higgsino limits.
|
|
|
Beneke, M., Hellmann, C., & Ruiz-Femenia, P. (2015). Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements. J. High Energy Phys., 05(5), 115–57pp.
Abstract: This paper concludes the presentation of the non-relativistic effective field theory formalism designed to calculate the radiative corrections that enhance the pair-annihilation cross sections of slowly moving neutralinos and charginos within the general minimal supersymmetric standard model (MSSM). While papers I and II focused on the computation of the tree-level annihilation rates that feed into the short-distance part, here we describe in detail the method to obtain the Sommerfeld factors that contain the enhanced long-distance corrections. This includes the computation of the potential interactions in the MSSM, which are provided in compact analytic form, and a novel solution of the multi-state Schrodinger equation that is free from the numerical instabilities generated by large mass splittings between the scattering states. Our results allow for a precise computation of the MSSM neutralino dark matter relic abundance and pair-annihilation rates in the present Universe, when Sommerfeld enhancements are important.
|
|
|
Beneke, M., Hellmann, C., & Ruiz-Femenia, P. (2013). Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos I. General framework and S-wave annihilation. J. High Energy Phys., 03(3), 148–48pp.
Abstract: We compute analytically the tree-level annihilation rates of a collection of non-relativistic neutralino and chargino two-particle states in the general MSSM, including the previously unknown off-diagonal rates. The results are prerequisites to the calculation of the Sommerfeld enhancement in the MSSM, which will be presented in subsequent work. They can also be used to obtain concise analytic expressions for MSSM dark matter pair annihilation in the present Universe for a large number of exclusive two-particle final states.
|
|
|
Hellmann, C., & Ruiz-Femenia, P. (2013). Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos II. P-wave and next-to-next-to-leading order S-wave coefficients. J. High Energy Phys., 08(8), 084–49pp.
Abstract: This paper is a continuation of an earlier work (arXiv:1210.7928) which computed analytically the tree-level annihilation rates of a collection of non-relativistic neutralino and chargino two-particle states in the general MSSM. Here we extend the results by providing the next-to-next-to-leading order corrections to the rates in the non-relativistic expansion in momenta and mass differences, which include leading P-wave effects, in analytic form. The results are a necessary input for the calculation of the Sommerfeld-enhanced dark matter annihilation rates including short-distance corrections at next-to-next-to-leading order in the non-relativistic expansion in the general MSSM with neutralino LSP.
|
|