Bemmerer, D., Boeltzig, A., Grieger, M., Gudat, K., Hensel, T., Masha, E., et al. (2025). The Felsenkeller shallow-underground laboratory for nuclear astrophysics. Eur. Phys. J. A, 61(1), 19–15pp.
Abstract: In the Felsenkeller shallow-underground site, protected from cosmic muons by a 45 m thick rock overburden, a research laboratory including a 5 MV Pelletron ion accelerator and a number of radioactivity-measurement setups is located. The laboratory and its installations are described in detail. The background radiation has been studied, finding suppression factors of 40 for cosmic-ray muons, 200 for ambient neutrons, and 100 for the background in germanium gamma-ray detectors. Using an additional active muon veto, typically the background is just twice as high as in very deep underground laboratories. The properties of the accelerator including its external and internal ion sources and beam line are given. For the radioactivity counting setup, detection limits in the 10-4 Bq range have been obtained. Practical aspects for the usage of the laboratory by outside scientific users are discussed.
|
Grieger, M., Hensel, T., Agramunt, J., Bemmerer, D., Degering, D., Dillmann, I., et al. (2020). Neutron flux and spectrum in the Dresden Felsenkeller underground facility studied by moderated He-3 counters. Phys. Rev. D, 101(12), 123027–15pp.
Abstract: Ambient neutrons may cause significant background for underground experiments. Therefore, it is necessary to investigate their flux and energy spectrum in order to devise a proper shielding. Here, two sets of altogether ten moderated He-3 neutron counters are used for a detailed study of the ambient neutron background in tunnel IV of the Felsenkeller facility, underground below 45 m of rock in Dresden/Germany. One of the moderators is lined with lead and thus sensitive to neutrons of energies higher than 10 MeV. For each He-3 counter moderator assembly, the energy-dependent neutron sensitivity was calculated with the FLUKA code. The count rates of the ten detectors were then fitted with the MAXED and GRAVEL packages. As a result, both the neutron energy spectrum from 10(-9) to 300 MeV and the flux integrated over the same energy range were determined experimentally. The data show that at a given depth, both the flux and the spectrum vary significantly depending on local conditions. Energy-integrated fluxes of (0.61 +/- 0.05), (1.96 +/- 0.15), and (4.6 +/- 0.4) x 10(-4) cm(-2) s(-1), respectively, are measured for three sites within Felsenkeller tunnel IV which have similar muon flux but different shielding wall configurations. The integrated neutron flux data and the obtained spectra for the three sites are matched reasonably well by FLUKA Monte Carlo calculations that are based on the known muon flux and composition of the measurement room walls.
|
Orrigo, S. E. A., Tain, J. L., Mont-Geli, N., Tarifeño-Saldivia, A., Fraile, L. M., Grieger, M., et al. (2022). Long-term evolution of the neutron rate at the Canfranc Underground Laboratory. Eur. Phys. J. C, 82(9), 814–11pp.
Abstract: We report results on the long-term variation of the neutron counting rate at the Canfranc Underground Laboratory, of importance for several low-background experiments installed there, including rare-event searches. The measurement campaign was performed employing the High Efficiency Neutron Spectrometry Array (HENSA) mounted in Hall A and lasted 412 live days. The present study is the first long-term measurement of the neutron rate with sensitivity over a wide range of neutron energies (from thermal up to 0.1 GeV and beyond) performed in any underground laboratory so far. Data on the environmental variables inside the experimental hall (radon concentration, air temperature, air pressure and humidity) were also acquired during all the measurement campaign. We have investigated for the first time the evolution of the neutron rate for different energies of the neutrons and its correlation with the ambient variables.
|